Seafood Watch® Standard for Fisheries

Public Comment Period - 4

Public Comment Guidance:

This document contains the Seafood Watch standard for fisheries, finalized in 2015, and outlines some potential changes that we have proposed implementing based on our use of the standard over the course of the last year. Our intent with these changes is to improve clarity and ease of use of the standard. Most are minor clarifications, but the one area which could potentially be more substantive is regarding when to use the Unknown Bycatch Matrices, addressed under Criterion 2.

Seafood Watch is accepting comments on these proposed changes to the Standard for Fisheries from August 15th through September 15th 2016. Please use the associated comment form available from www.seafoodwatch.org.

Introduction

The Monterey Bay Aquarium is requesting and providing an opportunity to offer feedback on the Seafood Watch Criteria for Fisheries. Before beginning this review, please familiarize yourself with all the documents available on our Standard review website.

Providing feedback, comments and suggestion

This document contains the version of the Seafood Watch Criteria for Fisheries which was revised through a public consultation process in 2014-2015 and accepted by our Multi-Stakeholder Group in September 2015, with some proposed changes outlined. “Guidance for public comment” sections have been inserted and highlighted. For comparison, the draft criteria from the first and second public consultation periods are available on our website.

A separate word document is posted for providing comment. Seafood Watch welcomes feedback and suggestions for improvement. Please provide feedback, supported by references wherever possible in any sections of the criteria of relevance to your expertise, in the comment form word document and return by email to SFWStandardReview@mbayaq.org.
Elements of the Criteria for Salmon Fisheries are shared with the general Wild-Capture Fisheries Criteria, which was revised through a public consultation process and accepted by our Multi-stakeholder Group in 2015.

Seafood Watch Ratings

The Seafood Watch Criteria for Fisheries are used to produce assessments for wild-capture fisheries resulting in a Seafood Watch rating of Best Choice (green), Good Alternative (yellow), or Avoid (red). The assessment criteria are used to determine a final numerical score as well as numerical and categorical sub-scores for each criterion. These scores are translated to a final Seafood Watch color rating according to the methodology described in the table below. The table also describes how Seafood Watch defines each of these categories. The narrative descriptions of each Seafood Watch color rating category, and the guiding principles listed below, compose the framework the criteria are based on, and should be considered when providing feedback on any aspect of the criteria.

<table>
<thead>
<tr>
<th>Best Choice</th>
<th>Final Score >3.2, and either Criterion 1 or Criterion 3 (or both) is Green, and no Red Criteria, and no Critical scores</th>
<th>Wild-caught and farm-raised seafood on the “Best Choice” list are ecologically sustainable, well managed and caught or farmed in ways that cause little or no harm to habitats or other wildlife. These operations align with all of our guiding principles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Alternative</td>
<td>Final score >2.2, and no more than one Red Criterion, and no Critical scores, and does not meet the criteria for Best Choice (above)</td>
<td>Wild-caught and farm-raised seafood on the “Good Alternative” list cannot be considered fully sustainable at this time. They align with most of our guiding principles, but there is either one conservation concern needing substantial improvement, or there is significant uncertainty associated with the impacts of this fishery or aquaculture operations.</td>
</tr>
<tr>
<td>Avoid</td>
<td>Final Score <=2.2, or two or more Red Criteria, or one or more Critical scores.</td>
<td>Wild-caught and farm-raised seafood on the “Avoid” list are caught or farmed in ways that have a high risk of causing significant harm to the environment. They do not align with our guiding principles, and are considered unsustainable due to either a critical conservation concern, or multiple areas where improvement is needed.</td>
</tr>
</tbody>
</table>

1. **Follow the principles of ecosystem-based fisheries management**

The fishery is managed to ensure the integrity of the entire ecosystem, rather than solely focusing on maintenance of single species stock productivity. To the extent allowed by the current state of the science, ecological interactions affected by the fishery are understood and protected, and the structure and function of the ecosystem is maintained.
2. Ensure all affected stocks\(^1\) are healthy and abundant
Abundance, size, sex, age and genetic structure of the main species affected by the fishery (not limited to target species) is maintained at levels that do not impair recruitment or long-term productivity of the stocks or fulfillment of their role in the ecosystem and food web.
Abundance of the main species affected by the fishery should be at, above, or fluctuating around levels that allow for the long-term production of maximum sustainable yield.

3. Fish all affected stocks at sustainable levels
Fishing mortality for the main species affected by the fishery should be appropriate given current abundance and inherent resilience to fishing while accounting for scientific uncertainty, management uncertainty, and non-fishery impacts such as habitat degradation.
The cumulative fishing mortality experienced by affected species must be at or below the level that produces maximum sustainable yield for single-species fisheries on typical species that are at target levels.
Fishing mortality may need to be lower than the level that produces maximum sustainable yield in certain cases such as multispecies fisheries, highly vulnerable species, or fisheries with high uncertainty.
For species that are depleted below target levels, fishing mortality must be at or below a level that allows the species to recover to its target abundance.

4. Minimize bycatch
Seafood Watch defines bycatch as all fisheries-related mortality or injury other than the retained catch. Examples include discards, endangered or threatened species catch, pre-catch mortality and ghost fishing. All discards, including those released alive, are considered bycatch unless there is valid scientific evidence of high post-release survival and there is no documented evidence of negative impacts at the population level.
The fishery optimizes the utilization of marine and freshwater resources by minimizing post-harvest loss and by efficiently using marine resources as bait.

5. Have no more than a negligible impact on any threatened, endangered or protected species
The fishery avoids catch of any threatened, endangered or protected (ETP) species. If any ETP species are inadvertently caught, the fishery ensures and can demonstrate that it has no more than a negligible impact on these populations.

6. The fishery is managed to sustain the long-term productivity of all affected species.
Management should be appropriate for the inherent resilience of affected marine life and should incorporate data sufficient to assess the affected species and manage fishing mortality to ensure little risk of depletion. Measures should be implemented and enforced to ensure that fishery mortality does not threaten the long-term productivity or ecological role of any species in the future.
The management strategy has a high chance of preventing declines in stock productivity by taking into account the level of uncertainty, other impacts on the stock, and the potential for increased pressure in the future.
The management strategy effectively prevents negative population impacts on bycatch species, particularly species of concern.

7. Avoid negative impacts on the structure, function or associated biota of marine habitats where fishing occurs.

\(^{1}\)“Affected” stocks include all stocks affected by the fishery, no matter whether target or bycatch, or whether they are ultimately retained or discarded.
The fishery does not adversely affect the physical structure of the seafloor or associated biological communities.
If high-impact gears (e.g. trawls, dredges) are used, vulnerable seafloor habitats (e.g. corals, seamounts) are not fished, and potential damage to the seafloor is mitigated through substantial spatial protection, gear modifications and/or other highly effective methods.

8. **Maintain the trophic role of all marine life**
All stocks are maintained at levels that allow them to fulfill their ecological role and to maintain a functioning ecosystem and food web, as informed by the best available science.

9. **Do not result in harmful ecological changes such as reduction of dependent predator populations, trophic cascades, or phase shifts**
Fishing activities must not result in harmful changes such as depletion of dependent predators, trophic cascades, or phase shifts.
This may require fishing certain species (e.g. forage species) well below maximum sustainable yield and maintaining populations of these species well above the biomass that produces maximum sustainable yield.

10. **Ensure that any enhancement activities and fishing activities on enhanced stocks do not negatively affect the diversity, abundance or genetic integrity of wild stocks**
Any enhancement activities are conducted at levels that do not negatively affect wild stocks by reducing diversity, abundance or genetic integrity.
Management of fisheries targeting enhanced stocks ensure that there are no negative impacts on the wild stocks, in line with the guiding principles described above, as a result of the fisheries.
Enhancement activities do not negatively affect the ecosystem through density dependent competition or any other means, as informed by the best available science.
Seafood Watch Criteria for Fisheries

Public comment guidance - This section contains the standards preamble.

The Monterey Bay Aquarium is committed to inspiring conservation of the oceans. To this end, Seafood Watch®, a program of the Monterey Bay Aquarium, researches and evaluates the sustainability of fisheries products and shares these seafood recommendations with the public and other interested parties in several forms, including regionally specific Seafood Watch pocket guides, smartphone apps and online at www.seafoodwatch.org.

The criteria laid out in this document allow assessment of the relative sustainability of wild-capture fisheries according to the guiding principles and conservation ethic of the Monterey Bay Aquarium. Farmed seafood sources are evaluated with a different set of criteria.

Seafood Watch® defines “sustainable seafood” as seafood from sources, whether fished or farmed, that can maintain or increase production without jeopardizing the structure and function of affected ecosystems. Sustainable wild-capture fisheries should ensure that the abundance of both targeted and incidentally caught species is maintained in the long term at levels that allow the species to fulfill its ecological role, while the structure, productivity, function and diversity of the habitat and ecosystem are all maintained. A management system should be in place that enforces all local, national and international laws to ensure long-term productivity of the resource and integrity of the ecosystem by adhering to the precautionary approach and responding to changing circumstances.

Scope

Seafood Watch® recommendations apply to a single stock or species caught in a single fishery as defined by gear type, region and management body.
Public comment guidance – The contents page provides an opportunity to see the full list of fisheries criteria. Note that Seafood Watch is partnering with Seafish UK and the Sustainable Fisheries Partnership to create a tool to evaluate the risk of human rights abuses in the at-sea portion of wild-capture fisheries, and we are developing a tool to assess greenhouse gas (GHG) emissions associated with up-to-the-dock or farmgate production of seafood products from fisheries and aquaculture.

Seafood Watch® Standard for Fisheries

Table of Contents
Introduction ...1
 Providing feedback, comments and suggestion ..1
Seafood Watch Ratings ..2
Seafood Watch Criteria for Fisheries ..5
Table of Contents ..6
Introduction ...6
Seafood Watch Guiding Principles ...Error! Bookmark not defined.
Seafood Watch Criteria and Scoring Methodology for Fisheries ..Error! Bookmark not defined.
Criterion 1 – Impacts on the Species Under Assessment ...7
 Factor 1.1 Abundance ..8
 Factor 1.2 Fishing Mortality ...14
Criterion 2 – Impacts on Other Capture Species ...17
 Factor 2.1 Abundance ..20
 Factor 2.2 Fishing Mortality ...21
 Factor 2.3 Modifying Factor: Discards and Bait Use ..22
Criterion 3 – Management Effectiveness ..24
 Factor 3.1 Management Strategy and Implementation ..25
 Factor 3.2 Bycatch Strategy ...28
 Factor 3.3 Scientific Research and Monitoring ...30
 Factor 3.4 Enforcement of Management Regulations ..32
 Factor 3.5 Stakeholder Inclusion ..32
Criterion 4 – Impacts on the Habitat and Ecosystem ...34
 Factor 4.1a Physical Impact of Fishing Gear on the Habitat/Substrate35
 Factor 4.1b Modifying Factor: Mitigation of Gear Impacts ...36
 Factor 4.2 Ecosystem-based Fisheries Management ..38
Overall Score and Final Recommendation ...40
Glossary ..41
References ..53
Appendices ..57
 Appendix 1 – Further guidance on interpreting the health of stocks and fishing mortality57
 Appendix 2 – Matrix of bycatch impacts by gear type ..60

February 12, 2016
Criterion 1 – Impacts on the Species Under Assessment

Overview – Criterion 1 is used for scoring the impacts of the fishery on the stock being assessed. It incorporates both the current abundance of the stock (i.e., whether it is overfished), and the fishing mortality (i.e., whether overfishing is occurring). The combination of scores for abundance and fishing mortality determines the score for Criterion 1. These factors are inherently complex as they take into account multiple considerations, including not just abundance and fishing mortality, but also inherent vulnerability of the species (which encompasses its productivity and susceptibility to fishing), uncertainty in the stock assessment or other data used to determine abundance and fishing mortality, and the degree to which the fishery under assessment is one of the substantial contributors to the cumulative (including commercial, recreational, subsistence and ghost fishing) fishing mortality experienced by a species.

Guiding principles

Ensure all affected stocks are healthy and abundant. Abundance, size, sex, age and genetic structure should be maintained at levels that do not impair the long-term productivity of the stock or fulfillment of its role in the ecosystem and food web.

Fish all affected stocks at sustainable levels. Fishing mortality should be appropriate given current abundance and inherent vulnerability to fishing while accounting for scientific uncertainty, management uncertainty, and non-fishery impacts such as habitat degradation.

The cumulative fishing mortality experienced by affected species must be at or below the level that produces maximum sustainable yield for single-species fisheries on typical species that are at target levels.

Fishing mortality may need to be lower than the level that produces maximum sustainable yield in certain cases such as multispecies fisheries, highly vulnerable species, or fisheries with high uncertainty.

For species that are depleted below target levels, fishing mortality must be at or below a level that allows the species to recover to its target abundance.

Assessment instructions

Evaluate Factors 1.1–1.2 under Criterion 1 to score the stock for which you want a recommendation. Evaluate Factors 2.1–2.3 under Criterion 2 to score all other main species in the fishery, including both
bycatch and retained species as well as any overfished, depleted, endangered, threatened or other species of concern that are regularly caught in the fishery.

Factor 1.1 Abundance

Goal: Stock abundance and size structure of native species is maintained at a level that does not impair recruitment or productivity

Overview: Factor 1.1 scores the abundance of species being assessed, including whether it is above or below limit and target reference points, if known, or classified as overfished, threatened or endangered. When a classification or stock assessment relative to reference points is not available, Factor 1.1 is scored on the basis on the species’ inherent vulnerability and, optionally, the use of certain appropriate data-limited assessment methods. The score from Factor 1.1, combined with Factor 1.2 (which assesses fishing mortality), determines the score for Criterion 1 – Impact on the Species Under Assessment.

Public comment guidance – Changes proposed below (in tracked changes) are clarifications to the text which would not materially affect the outcome of assessments. In addition, we have proposed some changes to the Productivity and Susceptibility Analysis (PSA) that we use to determine the vulnerability of a species or population. This method is used to help guide our assessment of abundance in the absence of a formal stock assessment or where abundance is otherwise considered unknown. We have added more guidance and default scores for scoring the susceptibility attributes under the PSA, because our pilot testing indicated that more guidance was needed. In addition, we propose additional language and an additional factor in the PSA for consistency with what has been proposed in the salmonid standard. This language and additional factor were proposed for the salmonid standard in response to comments that the PSA approach (based largely on marine species) did not adequately capture the issues that affect salmonid vulnerability. We aim to keep the fisheries and salmonid standards as consistent as possible, therefore we tentatively propose adding the same language and factors to the fisheries standard; however, the final decision will be based on comments received both during this consultation period as well as during the consultation period for the salmonid standard. We have also highlighted a question for your consideration regarding the additional habitat factor, below. We welcome comments and suggestions on whether these additions are appropriate and whether alternative factors should be considered. Any changes will be made to both standards to ensure consistent vulnerability assessments across all species.

Score according to table below. In cases of unknown abundance, calculate the inherent vulnerability using the Productivity-Susceptibility Analysis (MSC 2014) below this table.

<table>
<thead>
<tr>
<th>Conservation Concern</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
</table>
| Very Low | a. There is a recent stock assessment or update that has been approved through a robust scientific peer review process, **AND**
b. Biomass is estimated to be above or fluctuating around a target reference point (that is appropriate given the species’ ecological role) with no scientific controversy | 5 |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>1. There is a quantitative stock assessment that is no more than 10 years old AND the biomass:</td>
</tr>
<tr>
<td></td>
<td>a. is above a limit reference point that is appropriate given the species’ ecological role, and at least 75% of the target reference point. (i.e., biomass may be below a target reference point); or</td>
</tr>
<tr>
<td></td>
<td>b. is estimated to be above a target reference point (that is appropriate given the species’ ecological role), but does not meet all the requirements for very low concern OR</td>
</tr>
<tr>
<td></td>
<td>2. Quantitative stock assessment is lacking, but</td>
</tr>
<tr>
<td></td>
<td>a. the species is NOT highly vulnerable, AND</td>
</tr>
<tr>
<td></td>
<td>b. there are at least 2 appropriate data-limited assessment methods based on distinct data sources that suggest the stock is healthy, and no conflicting indicators (see Appendix 7)</td>
</tr>
</tbody>
</table>

Moderate	1. Species is above a limit reference point but below 75% of the target reference point OR
	2. Species is NOT highly vulnerable AND either
	a. There is no stock assessment, no reference points, and/or no evidence to suggest that stock is either above or below reference points; or
	b. There is conflicting information about stock status (e.g., conflicting results of alternative models; recent (no more than 10 years old and not based on older data than the stock assessment) IUCN listing disagrees with stock assessment; or conclusions of available data-limited assessment methods are conflicting)(see Appendix 7), and there is no clear reason to suggest one set of information is more

1. See Productivity-Susceptibility Analysis instructions (below) to determine vulnerability
2. Guidance on "appropriate data-limited assessment methods" to be developed based on the findings of the NCEAS SNAP group on data-limited fisheries management, expected in early 2016. Until that time, Appendix 7 is provided to illustrate examples only and these indicators and thresholds should not be assumed to be appropriate for all fisheries. Data and assessments to be provided by the fisheries and verified by expert input and use of the NCEAS SNAP group tool.
3. **Quantitative stock assessment is lacking, but there are some data indicating status is not of concern, e.g.**
 a. Stock is classified by management body as not overfished or has IUCN least concern status, OR
 b. The species IS highly vulnerable, **but** there are at least 2 appropriate data-limited assessment methods based on distinct data sources that suggest the stock is healthy, and no conflicting indicators (see Appendix 7)

3. **Species IS highly vulnerable AND**
 a. There is no quantitative stock assessment, but
 b. There are some data indicating status is not of concern (e.g. classified by management body as not overfished; IUCN least concern status; or there at least 2 appropriate data-limited assessment methods based on distinct data sources suggest the stock is healthy, with no data-limited assessment methods suggesting otherwise) (see Appendix 7)

High

1. **Probable** that stock is below the limit reference point, depleted/overfished, or determined to be a stock of concern, vulnerable, endangered or threatened by a state, national, or international scientific body (including COSEWIC designations of Endangered or Threatened and IUCN listings of Critically Endangered, Endangered, Vulnerable or Near Threatened; however, more recent or more regional/stock specific data can override these determinations);

 OR

2. **Available appropriate data-limited assessment method(s)** (see Appendix 7) suggest status of stock is poor, OR

3. **Species is highly vulnerable AND**
 a. no evidence suggests that the stock is either above or below reference points; **or**
 b. available data, including appropriate data-limited assessment methods (see Appendix 7), have conflicting outcomes

4. See Productivity-Susceptibility Analysis instructions (below) to determine vulnerability

5. Guidance on “appropriate data-limited assessment methods” to be developed. Until that time, Appendix 7 is provided to illustrate examples only and these indicators and thresholds should not be assumed to be appropriate for all fisheries. Data and assessments to be provided by the fisheries and verified by expert input.
Instructions for Productivity-Susceptibility Analysis (for determining vulnerability)

Public comment guidance – Edits shown below in tracked changes are edits to the Productivity-Susceptibility Analysis that were proposed in the salmonid standard public comment period, based on previous comments that the PSA approach did not adequately address salmonid life history traits. We welcome comments and suggestions on whether these additions are appropriate and whether alternative factors should be considered. Any changes will be made to both standards to ensure consistent vulnerability assessments across all species.

In reviewing these potential changes, we ask you to consider these particular questions:

1. Do you have any concerns with edits to the PSA approach shown here?
2. Do you have any feedback as to whether it is more appropriate to consider “habitat quality” as proposed here under “susceptibility” attributes, or under “productivity”? We received some stakeholder feedback during the salmonid consultation that it would be more appropriate as a productivity attribute.

To determine whether a species is highly vulnerable (only if needed for rating the species using the table above): **If the species is a shark, sea turtle, seabird, marine mammal or coral, it is automatically considered to have ‘high’ inherent vulnerability.** The default “high vulnerability” score for these taxa can be overridden in cases where there is evidence that the population’s status is not of high concern. For teleost fish and invertebrate species, score inherent vulnerability according to the PSA method described below, adapted from the Marine Stewardship Council (MSC) 2014 (available at https://www.msc.org/documents/scheme-documents/fisheries-certification-scheme-documents/fisheries-certification-requirements-version-2.0). Productivity attributes used in this methodology differ for fish and invertebrate species. When data are insufficient to score any given productivity attribute, that attribute can be left blank. Susceptibility attributes are assigned default values in cases where data are insufficient for scoring (see tables below).

Adapted steps from MSC instructions on conducting a PSA (for reference see description starting on page 87 of the [MSC Fisheries Certification Requirements v2.0](https://www.msc.org/documents/scheme-documents/fisheries-certification-scheme-documents/fisheries-certification-requirements-version-2.0))

1. The analyst will use the ‘SFW PSA scoring tool’ to calculate productivity and susceptibility scores.
2. For each data-deficient stock combination (gear type, location, body of water) that is assessed using PSA, a separate PSA score will be calculated with this tool. Both productivity and susceptibility will be scored on a three-level risk scale: low, medium and high. Where there is limited or conflicting information for a productivity or susceptibility attribute, use the more precautionary (higher value) score.
3. For Productivity: See the **productivity table** for guidance. Note that lower productivity corresponds to higher risk (and vice versa). Additional information below for certain attributes:
 - Score the average maximum size and average size at maturity for fish species only.
 - Score density dependence for invertebrate species only.
4. For Susceptibility: See the **susceptibility table** for guidance. Note that lower susceptibility corresponds to lower risk (and vice versa). Additional information below for certain attributes:
“Areal overlap” and “vertical overlap” should be scored with consideration of all fisheries impacting the species.

“Selectivity” and “post-capture mortality” should be scored with reference to the fishery under assessment only.

Default values are provided in the table. Default values should be used unless there is evidence to the contrary.

For ‘Post-capture mortality’ (PCM) in the absence of observer data or other verified field observations made during commercial fishing operations that indicate the individuals are released alive and post-release survivorship is high, the default value should be high. The analyst may adjust the default value when 1) a high score is allocated for selectivity and 2) a large portion of animals are returned alive and survive the encounter.

5. To calculate the overall score:
 - Productivity score \((P) \) = average of the productivity attribute scores \((p_1, p_2, p_3, p_4, p_5, p_6, p_7, \text{ and } p_8, \text{ where } p_8 \text{ is only used for invertebrates}) \)
 - Susceptibility score \((S) \) = product of the susceptibility attribute scores \((s_1, s_2, s_3, s_4) \), rescaled as follows:
 \[
 S = \left(\frac{(s_1 \cdot s_2 \cdot s_3 \cdot s_4) - 1}{40} \right) + 1
 \]
 - Vulnerability score \((V) \) = the Euclidean distance of 1 and 2 using the following formula:
 \[
 V = \sqrt{P^2 + S^2}
 \]

6. Vulnerability Score range:
 - \(< 2.64 = \text{Low vulnerability}\)
 - \(\geq 2.64 \text{ and } \leq 3.18 = \text{Medium vulnerability}\)
 - \(> 3.18 = \text{High vulnerability}\)

7. SFW uses the high vulnerability threshold in the scoring table for 1.1 (effectively grouping low and medium vulnerability stocks).

8. PSA results of low to moderate vulnerability may be overridden with a “high vulnerability” score in cases where either:
 - the species has one or more extremely vulnerable attributes under “productivity” (e.g., produces fewer than ten young per year or lives greater than 40 years), OR
 - available evidence suggests a high concern with the status of similar species and/or neighboring related stocks

Productivity attributes and rankings from Marine Stewardship Council 2014:

<table>
<thead>
<tr>
<th>Productivity Attribute</th>
<th>High productivity (low risk, score = 1)</th>
<th>Medium productivity (medium risk, score = 2)</th>
<th>Low productivity (high risk, score = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average age at maturity</td>
<td>< 5 years</td>
<td>5-15 years</td>
<td>>15 years</td>
</tr>
<tr>
<td>Average maximum age</td>
<td><10 years</td>
<td>10-25 years</td>
<td>>25 years</td>
</tr>
<tr>
<td>Fecundity</td>
<td>>20,000 eggs per year</td>
<td>100-20,000 eggs per year</td>
<td><100 eggs per year</td>
</tr>
<tr>
<td>Average maximum size</td>
<td>< 100 cm</td>
<td>100-300 cm</td>
<td>>300 cm</td>
</tr>
<tr>
<td>Susceptibility Attribute</td>
<td>Low S (score = 1)</td>
<td>Medium S (score = 2)</td>
<td>High S (score = 3)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Areal overlap (Considers all fisheries)</td>
<td>Vast majority (>90%) of species concentration (main geographic range) is unfished (considering all fisheries) (must have evidence)</td>
<td>Most (70%-90%) of species concentration is unfished by any fishery (must have evidence)</td>
<td>>30% of the species concentration is fished, considering all fisheries. Default score if unknown</td>
</tr>
<tr>
<td>Vertical overlap (Considers all fisheries)</td>
<td>Low overlap between fishing depths and depth range of species, i.e. most of the species depth range (>=66%) is unfished (considering all fisheries) (Must have evidence; unlikely for any “main species”)</td>
<td>Medium overlap between fishing depths of depth range of species, considering all fisheries, i.e. species has considerable portion (>=33%) of depth range that is unfished (must have evidence)</td>
<td>High degree of overlap between fishing depths and depth range of species Default score for target species, as well as any air-breathing animal, or when unknown</td>
</tr>
<tr>
<td>Selectivity of fishery (Specific to fishery under assessment)</td>
<td>Species is not targeted AND is not likely to be captured by gear (e.g., average body size at maturity is smaller than mesh size (net fisheries), or species is not attracted to the bait used (line fisheries), or is too large to enter trap (pot/trap fisheries), etc.)</td>
<td>Species is targeted, or is incidentally encountered AND is not likely to escape the gear, BUT conditions under ‘high risk’ do not apply Default score when conditions under ‘high risk’ do not apply Attributes of the fishery, in combination with the species’ biology or behavior, e.g. migratory bottlenecks, spawning aggregation, site fidelity, unusual attraction to gear,</td>
<td>Species is targeted or is incidentally encountered AND Attributes of the fishery, in combination with the species’ biology or behavior, e.g. migratory bottlenecks, spawning aggregation, site fidelity, unusual attraction to gear,</td>
</tr>
</tbody>
</table>

Susceptibility attributes and rankings from Marine Stewardship Council 2014.

Comment [RP3]: Note: This table has been transcribed from the original image that was copied from the MSC standard, with the addition of the term “or brooder” – addition to clarify how to score species with this life history characteristic.

Comment [RP4]: Additions for consistency with salmonids.
<table>
<thead>
<tr>
<th>Factor 1.2</th>
<th>Fishing Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal:</td>
<td>Fishing mortality is appropriate for current state of the stock.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quality of Habitat</th>
<th>Factor 1.2 Fishing Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spawning habitat is robust, no known degradation from non-fishery impacts.</td>
<td>Goal: Fishing mortality is appropriate for current state of the stock.</td>
</tr>
<tr>
<td>Spawning habitat has been moderately altered by non-fishing impacts</td>
<td></td>
</tr>
<tr>
<td>Default score</td>
<td></td>
</tr>
<tr>
<td>Spawning habitat has been substantially compromised from non-fishery impacts and thus has reduced capacity to support the species, for example, from dams, pollution, or coastal development.</td>
<td></td>
</tr>
</tbody>
</table>
Overview: This factor assesses whether fishing mortality for each species caught in the fishery is at an appropriate level (currently defined as at or below maximum sustainable yield, or an equivalent proxy). Regarding the target species, this section includes direct and indirect fishing mortality from the fishery. Indirect mortality can include losses where the catch dies, but is not brought on board, and post-release mortality.

NOTE: Ratings are based on fishing mortality/exploitation rate, e.g., F/FMSY. When determining whether a fishery is a substantial contributor, and/or whether fishing mortality is at or below a sustainable level, err on the side of caution when there is uncertainty. For further guidance, see Appendix 1 (guidance on evaluating fishing mortality).

<table>
<thead>
<tr>
<th>Conservation Concern</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Concern</td>
<td>1. Probable (>50% chance) that fishing mortality from all sources (including commercial, recreational, subsistence, and ghost fishing, if applicable) is at or below a sustainable level that is appropriate given the species’ ecological role (i.e., a level that will allow a population to maintain abundance at or rebuild to B_{msy} or a suitable proxy) OR 2. Species is non-native OR 3. For species assessed under C2: Fishery is not a substantial contributor to fishing mortality or its contribution to mortality is expected to be low enough to not adversely affect population</td>
<td>5</td>
</tr>
<tr>
<td>Moderate Concern</td>
<td>1. F is fluctuating around F_{MSY}, or for species with an exceptional role in the ecosystem, a reference point that is appropriate given the species’ ecological role OR 2. Unknown; OR 3. F is below reference point but reference point is less conservative than F_{MSY}</td>
<td>3</td>
</tr>
<tr>
<td>High Concern</td>
<td>1. Probable (>50% chance) or suspected that fishing mortality from all sources (including commercial, recreational, subsistence, and ghost fishing, if applicable) is above a sustainable level that is appropriate given the species’ ecological role (i.e., a level that will allow a population to maintain abundance at or rebuild to B_{msy} or a suitable proxy) (e.g., overfishing is occurring)</td>
<td>1</td>
</tr>
</tbody>
</table>
1.2. For species assessed under Criterion 2: individual fishery’s contribution is unknown or fishery is a substantial contributor.

OR

2.3. For forage species: reference points that are appropriate given species ecological role have not been defined and the fishery lacks a precautionary strategy that accounts for the needs of dependent predators (see pages 90-91 of Lenfest Forage Fish Task Force guidelines or pages 8-9 of the Lenfest summary document).

AND

3.4. For species assessed under Criterion 2: individual fishery’s contribution is unknown or fishery is a substantial contributor.

Criterion 1 Score and Rating

Score = geometric mean (Factors 1.1, 1.2).

Rating is based on the Score as follows:

- >3.2 = Green
- >2.2 and ≤3.2 = Yellow
- ≤2.2 = Red
Criterion 2 – Impacts on Other Capture Species

Overview: Analysts assess Criterion 2 using the same factors as Criterion 1, but apply those factors to bycatch and other main species that are caught together in the fishery with the species under assessment (see specific guidelines for marine mammals, and for cases where bycatch species are unknown). A critical aspect of assessing Criterion 2 is determining which species need to be included for assessment, termed “main species” and defined under “Assessment Instructions” below.

Public comment guidance – There are two proposed changes in this section. One, the edits to the marine mammal bycatch guidance table, is for simplification and clarification only (there were rows and columns included in the table that were not needed for scoring purposes) and would not result in any scoring changes.

The other proposed change has to do with how fisheries are assessed when there are bycatch species that are known, but the stock status of the species is unknown (i.e. there are no stock assessments or data limited assessments). The version of the criteria that was accepted at the Multi-Stakeholder Group meeting in September 2015 included instructions similar to those proposed below, in that those species would be assessed using the Productivity-Susceptibility Analysis (PSA) as outlined in Criterion 1. However, over the course of the last eight months we have trialed a simplification that entails grouping these species by taxa and using the Unknown Bycatch Matrix (UBM) to score each taxa, rather than scoring species under the PSA. The goal of this simplification was to streamline the assessments, not to alter the outcomes (see Appendix 8 for more). However, there is some concern after trialing this method over the last eight months that it may result in more conservative/lower Seafood Watch scores than the PSA method. Therefore in the edits below, we propose returning to the method of using the PSA to score all known, but unassessed, bycatch species (excepting sea turtles, seabirds, marine mammals, and sharks, which are best assessed with the revised UBM, as the PSA is not calibrated for these species).

Guiding principles

Ensure all affected stocks are healthy and abundant. Abundance, size, sex, age and genetic structure should be maintained at levels that do not impair the long-term productivity of the stock or fulfillment of its role in the ecosystem and food web.

Fish all affected stocks at sustainable levels. Fishing mortality should be appropriate given current abundance and inherent vulnerability to fishing while accounting for scientific uncertainty, management uncertainty, and non-fishery impacts such as habitat degradation.

The cumulative fishing mortality experienced by affected species must be at or below the level that produces maximum sustainable yield for single-species fisheries on typical species that are at target levels.
Fishing mortality may need to be lower than the level that produces maximum sustainable yield in certain cases such as multispecies fisheries, highly vulnerable species, or fisheries with high uncertainty.

For species that are depleted below target levels, fishing mortality must be at or below a level that allows the species to recover to its target abundance.

Minimize bycatch. Seafood Watch® defines bycatch as all fisheries-related mortality or injury other than the retained catch. Examples include discards, endangered or threatened species catch, bait species, pre-catch mortality and ghost fishing. All discards, including those released alive, are considered bycatch unless there is valid scientific evidence of high post-release survival and there is no documented evidence of negative impacts at the population level.

The fishery optimizes the utilization of marine and freshwater resources by minimizing post-harvest loss and by efficiently using marine and freshwater resources as bait.

Have no more than a negligible impact on any threatened, endangered or protected species

The fishery avoids catch of any threatened, endangered or protected (ETP) species. If any ETP species are inadvertently caught, the fishery ensures and can demonstrate that it has no more than a negligible impact on these populations.

Assessment instructions

The Criterion 2 score for the stock for which you want a recommendation is the lowest score of all the other main species caught with it (including both target and non-target, retained and discarded species), multiplied by the discard + bait use rate. A species is a main species if it meets any of the following conditions (‘catch’ here includes landings plus discards):

- A common component of the catch (as guidance, >5% of the catch in most cases), or
- Overfished, endangered, threatened, undergoing overfishing, or otherwise a species of concern, where catch occurs regularly and may significantly contribute to the conservation concern (i.e., more than a negligible and/or sporadic level of catch). As guidance, mortality of the species caused by this fishery is >5% of a sustainable level, or
- Fishery under assessment is one of the main sources of fishing mortality for the species, including bait species if known (as guidance, approx. 20% or more of total fishing mortality), and
- Bait species should be treated as a bycatch species. If the species used as bait are unknown but together account for greater than 5% of the catch and no other main species have been identified, then add ‘unknown finfish’ with abundance and fishing mortality both scored as “moderate concern”.

Note: Main species should include only those species that can be caught together in a set. It should not include species that are caught during separate hauls/harvest actions/attempts/sets, even though they may be targeted or caught opportunistically in the same area, using the same gear, and potentially on the same trip. Exceptions can be made based on a case by case basis depending on the fishing method.

Identifying unknown species
If the main species are unknown or information on species composition is incomplete, use the Unknown Bycatch Matrices in Appendix 2 to identify those taxa that are most likely to interact substantially with the fishing gear, defined as scoring a 3.5 or below in the tables. Species with scores above 3.5 from the Unknown Bycatch Matrices do NOT need to be assessed. Like taxa should be grouped together such that there are assessments for ‘finfish’, ‘benthic invertebrates’, etc., with species identified in the text to the extent possible. Main taxa identified above can be modified using the following additional information where available and appropriate:

1. Geographic range of the fishery
2. Degree of overlap, if any (with foraging areas, breeding grounds, etc.) between fishing and potential bycatch species
3. Fishing depth
4. Whether the fishery is operating in coastal (some coastal areas may have a greater impacts on some species) or open-ocean systems
5. Whether the fishery operates seasonally and coincides with breeding season, and other concerns based on fishing region and the conservation concern for the potential bycatch species.

If there is no bycatch and no other main species landed, the fishery receives a score of five for this criterion, the remaining questions in Criterion 2 can be skipped, and the assessor can continue with Criterion 3.
Factor 2.1 Abundance

Goal: Stock abundance and size structure of all main bycatch species/stocks is maintained at a level that does not impair recruitment or productivity.

Overview: This factor is based on Factor 1.1, with additional guidance for cases where there is bycatch of unknown species. This section includes guidance on use of the Unknown Bycatch Matrices (see Appendix 2).

Known and assessed species
When bycatch species are known and have stock assessments, follow the assessment instructions for Factor 1.1 above (the Factor for Abundance is identical for all main species caught in the fishery, whether target, other retained, or discarded).

Known but data-limited species
In cases where bycatch species are known but not formally assessed: when a given species has no formal stock assessment but there are at least two appropriate data-limited assessments to indicate stock status (See Appendix 7 for examples of appropriate data-limited assessments), stock abundance should be assessed as in Factor 1.1. If there are no appropriate data-limited methods that can be used to indicate stock status, follow guidance for “unassessed species” below.

Public comment guidance – Text in tracked changed below outlines proposed changes to return to a method of using Productivity-Susceptibility Analysis for scoring bycatch species of unknown status.

We are particularly seeking input on these questions:
 1) Do you have any feedback as to whether it is more appropriate to score fisheries with known bycatch composition, but unknown status of the bycatch species, using our Unknown Bycatch Matrix for taxon groups, or using Productivity-Susceptibility Analysis for each individual species?
 2) Do you have any other suggestions or proposed edits to the language below?

Unassessed species
In cases where bycatch species are known, but there is no indication of stock status (for example, there is no formal stock assessment or data-limited assessment), stock abundance should be assessed as in Factor 1.1, while will require use of the Productivity-Susceptibility Analysis in most cases. If bycatch includes marine mammals, sea turtles, seabirds and/or highly vulnerable sharks, and there is no assessment of the fishery’s impact on these species, the unknown bycatch matrix (UBM) should be used to score fishing mortality for these species. Where bycatch species are not fully known, but taxonomic groups at risk are known or can be inferred, group species by taxon and use the Unknown Bycatch Matrices to score each group. While using the UBM, note that the UBM score can be overridden if the evidence suggests that bycatch species caught in the particular fishery being assessed are not of high concern. Specific bycatch species should be listed in the text, and care should be taken to ensure that species likely to be of higher vulnerability are given appropriate consideration.
Unknown bycatch composition

In cases where bycatch composition is unknown or data-limited, use the Unknown Bycatch Matrices to assess the likely bycatch species (as defined by using the instructions for “identifying unknown species” under “main species”).

To use the Unknown Bycatch Matrices:

1. Determine which taxa to include: begin by considering each taxon listed in Appendix 2/Unknown Bycatch Matrices for this type of fishery with a score of 3.5 or below. This list can be adjusted as appropriate taking into account conditions of the particular fishery. When bycatch species are known, all taxa that include species that meet the ‘main species’ threshold should be scored.

2. Score Factor 2.1 as ‘high concern’ if the taxon is comprised largely of species that are either:
 a. Of high vulnerability (i.e., sharks, sea turtles, marine mammals, seabirds, and coral, as well as families or genera of fish or invertebrates that are known to have high vulnerability (see list in Appendix 2),
 b. Unassessed in the fishery area, but closely related species or neighboring stocks of known status are generally of high concern, or
 c. Are overfished, endangered or threatened within the range of the fishery

 Note: The score of ‘high concern’ can be overridden based on data that indicate a particular species is not highly vulnerable or a specific fishery is operating differently from the standard operating procedures.

3. Score Factor 2.1 as ‘moderate concern’ for teleost fish or invertebrates that are not from highly vulnerable taxa as defined in #2 above.

Factor 2.2 Fishing Mortality

Goal: Fishing mortality is appropriate for the current state of all main bycatch species/stocks.

Overview – Generally, Criterion 2.2 follows the structure of Criterion 1.2.

Known species

Follow the assessment for Factor 1.2 above (the Factors for Abundance and Fishing Mortality are identical for all main species caught in the fishery, whether target, other retained, or discarded AND are identical for bait species used in the fishery).

Marine Mammals in U.S. Fisheries

Additional guidance for scoring of marine mammals caught in U.S. fisheries is given below (due to the availability of data on potential biological removal (PBR) and fishing mortality rates on all bycaught marine mammals, available in marine mammal stock assessments and List of Fisheries reports, see http://www.nmfs.noaa.gov/pr/interactions/lof/)
Marine mammals in non-U.S fisheries should be scored using a similar approach where low concern is given where there is evidence to show the fishery is not having a negative impact on the recovery/stability of the marine mammal population.

<table>
<thead>
<tr>
<th>% of PBR taken by fishery</th>
<th>Cumulative fisheries mortality > PBR?</th>
<th>Fishery category in "List of Fisheries" (based on that species)</th>
<th>Seafood Watch Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td><1%</td>
<td>No</td>
<td>Category-III</td>
<td>Low</td>
</tr>
<tr>
<td>1-10%</td>
<td>No</td>
<td>Cat-III (if cumulative take >10% or III (if cumulative take ≤10%))</td>
<td>Low</td>
</tr>
<tr>
<td><10-50%</td>
<td>No</td>
<td>Cat-III</td>
<td>Low</td>
</tr>
<tr>
<td>50-100%</td>
<td>No</td>
<td>Cat-I</td>
<td>Moderate</td>
</tr>
<tr>
<td><5%</td>
<td>Yes</td>
<td>Cat-III</td>
<td>Low</td>
</tr>
<tr>
<td><10%5-10% and not one of the main contributors to total mortality</td>
<td>Yes</td>
<td>Cat-III</td>
<td>Low</td>
</tr>
<tr>
<td>10-50% and not one of the main contributors to total mortality</td>
<td>Yes</td>
<td>Cat-I</td>
<td>Moderate</td>
</tr>
<tr>
<td>>50% OR a main contributor to total fisheries-related mortality</td>
<td>Yes</td>
<td>Cat-I</td>
<td>High</td>
</tr>
</tbody>
</table>

If PBR or fishery mortality relative to PBR is not known, score conservatively given what is known (e.g., fishery and/or species classification) or score as “moderate.” Example: if it is unknown but fishery is classified as Category II and species is not strategic (see http://www.nmfs.noaa.gov/pr/laws/mmpa/text.htm#section3, (US U.S.C. 1362(19)), score as “low.”

Unknown or data limited species

Taxa identified scored using the Unknown Bycatch Matrices should be scored according to the table in Appendix 2 and the table below. As with determining main species and scoring abundance, if there are data that indicate a specific fishery is operating differently from the standard operating procedures, the Unknown Bycatch Matrices can be overruled.

<table>
<thead>
<tr>
<th>Bycatch score from Unknown Bycatch Matrices (1-5)</th>
<th>Fishing Mortality</th>
</tr>
</thead>
<tbody>
<tr>
<td>>=3.5</td>
<td>Low Concern</td>
</tr>
<tr>
<td>2.5-3</td>
<td>Moderate Concern</td>
</tr>
<tr>
<td>1-2</td>
<td>High Concern</td>
</tr>
</tbody>
</table>

Factor 2.3 Modifying Factor: Discards and Bait Use
Goal: *Fishery optimizes the utilization of marine and freshwater resources by minimizing post-harvest loss. For fisheries that use bait, bait is used efficiently.*

Overview: While the rest of Criterion 2 focuses on the population impacts on bycatch and other capture species, Factor 2.3 addresses the issue of the waste associated with high discards or bait use in capture fisheries. The score is adjusted downward based on high discards + bait use and the color rating of Criterion 2 is affected accordingly.

Because bait use is considered in 2.3 but is rarely quantified, we aim to provide default scores for bait use, based on literature review, for a variety of fishery types (target species and gear). We will provide an opportunity to override these default scores if data specific to the fishery can be provided.

Instructions: This weighting factor is addressed once for each fishery under assessment. Both bait and dead discards are considered relative to total landings. This ratio refers to the total dead discards and/or bait use relative to total landings of *all species* caught in the fishery. The discard mortality rate is generally assumed to be 100% (*i.e.*, all discards count as dead discards). Exceptions include cases where research has demonstrated high post-release survival, including invertebrates caught in pots and traps. Research that demonstrates high post-release survival for the same or similar species caught with the same or comparable gear types may qualify as showing high post-release survival. When discard mortality rates are known, multiply these rates by the amount of discards for the relevant species to determine the amount of dead discards. If the bycatch-to-landings ratio and/or bait use are unknown, refer to average bycatch rates for similar fisheries (based on gear type, target species and/or location) as given in review papers (*e.g.*, Kelleher 2005 and Alversion et al. 1994, NMFS 2013). Bait use, if unknown, need only be addressed in cases where it is likely to be substantial relative to landings (*e.g.*, lobster pot fishery). Err on the side of caution when there is no information.

If the amount of dead discards plus bait use relative to total *landings* (in biomass or numbers of fish, whichever is higher) exceeds 100% (*i.e.*, discards plus bait exceeds landings), modify the total score for Criterion 2 by multiplying by a factor of 0.75. Other fisheries are unaffected (given a score of 1).

<table>
<thead>
<tr>
<th>Ratio of bait + discards/landings</th>
<th>Factor 2.3 score</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 100%</td>
<td>1</td>
</tr>
<tr>
<td>≥100%</td>
<td>0.75</td>
</tr>
</tbody>
</table>

Criterion 2 Score and Rating

Criterion 2 Score for the stock for which you want a recommendation = Subscore * Discard Rate (Factor 2.4).

- **Subscore** = lowest subscore of all other assessed species caught.
 - **Subscore for each species** = geometric mean (Factors 2.1, 2.2).

Rating is based on the lowest *Score* as follows:
- >3.2 = **Green**
• >2.2 and ≤3.2 = Yellow
• ≤2.2 = Red

Criterion 3 – Management Effectiveness

Overview: Criterion 3 (Management Effectiveness) deals with the effectiveness of the harvest strategy, implementation, enforcement and monitoring to control fishing pressure on the managed species, as well as effectiveness of bycatch management.

Public comment guidance – Proposed edits in Criterion 3 are shown below in tracked changes and reflect clarifications only. They would not materially affect the outcome of any assessments.

Guiding principles

The fishery is managed to sustain the long-term productivity of all affected species
Management should be appropriate for the inherent resilience of affected aquatic life and should incorporate data sufficient to assess the affected species and manage fishing mortality to ensure little risk of depletion. Measures should be implemented and enforced to ensure that fishery mortality does not threaten the long-term productivity or ecological role of any species in the future.

Assessment instructions

Generally, 3.1 assesses management strategies for retained species and 3.2 assesses management strategies for discarded species. However, a single species can both be retained and discarded, which complicates this clear division. Therefore, the division between 3.1 and 3.2 can be based on different types of management strategies rather than by species.

• 3.1: Strategies for managing catch – i.e. fishery stock management, such as setting total allowable catches etc., should be evaluated under 3.1. If the fishery lacks regulations to either manage or prevent catch of a particular species, that should be addressed under 3.1 if the species is ever retained or sold, even if it’s a relatively minor species.
• 3.2: Strategies for preventing catch – i.e. avoiding undesired, endangered or protected species, including gear modifications, etc., should be evaluated under 3.2.

The lack of regulations preventing catch of any protected or endangered species, marine mammals, etc. that are not retained and that are vulnerable to the fishery should always be considered under 3.2.

Assess Factors 3.1 through 3.5 once for each fishery. See table below to calculate final C3 score.

Step 1: Assign a rating for each of the five management subfactors using the table below:
(Nota: if a “Critical” is scored for 3.1, you can continue to the overall scoring table for Management without needing to score other subfactors)
Factor 3.1 Management Strategy and Implementation

Goal: Management strategy has a high chance of preventing declines in stock productivity by taking into account the level of uncertainty, other impacts on the stock, and the potential for increased pressure in the future. See Appendix 4 for more guidance.

<table>
<thead>
<tr>
<th>3.1 Management strategy and implementation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
<td>For a fishery targeting a single stock, or For a multi-species fishery where management of more than 70% of the fishery’s main, primary targeted and retained, native species/stocks (by number) meet the following standards:</td>
</tr>
</tbody>
</table>
| Goal: Fishery has highly appropriate strategy and goals and there is evidence that the strategy is being implemented successfully | 1. Appropriate management/conservation targets have been defined (e.g., reference points);
AND
2. Precautionary policies that are based on scientific advice and incorporate uncertainty, environmental variability, and risk aversion are in place, including regulations to control fishing mortality and respond to the state of the stock (see Appendix 3 for examples of highly effective management strategies);
AND
3. Effective strategies are in place for targeted/retained overfished, depleted, endangered or threatened species that will allow for recovery with a high likelihood of success in an appropriate timeframe;
AND
4. There is evidence that the strategy is being implemented successfully.
OR
5. For NON-NATIVE species,
a. strategies are in place that:
1) prevent further spread of and reduce biomass over time or suppress biomass to low levels (e.g., below B_{MSY}); or
2) include mechanisms to allow for recovery of species impacted by the non-native;
AND |
b. Management does not exacerbate concern with the non-native, e.g., through stocking or seeding.

<table>
<thead>
<tr>
<th>Moderately effective</th>
<th>Fishery does not meet all the standards of ‘highly effective’ management, but For a fishery targeting a single stock; or For a multi-species fishery where management of at least 70% of the fishery’s main, primary targeted and retained native species/stocks (by number) meets the following standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. Management measures in place still exceed those for ‘ineffective’ or ‘Critical’ management;</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>2. Measures that are expected to be effective are in place (see Appendix 3), but:</td>
</tr>
<tr>
<td></td>
<td>a. There is a need for increased precaution (e.g., stronger reductions in TAC when biomass declines, quicker reaction to changes in populations, etc.);</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>b. Effectiveness is unknown and it is UNLIKELY that the fishery is having serious negative impacts on any retained populations (e.g., statuses of all main retained populations are known and none are scored red);</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>c. Measures have not been in place long enough to evaluate their success;</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>3. Species of Concern, and Overfished or Depleted Stocks</td>
</tr>
<tr>
<td></td>
<td>a. For all targeted/retained species that are overfished or depleted, management has a rebuilding or recovery strategy in place whose eventual success is probable; or</td>
</tr>
<tr>
<td></td>
<td>b. Best management practices to minimize mortality of “stocks of concern” are implemented and are believed to be effective;</td>
</tr>
<tr>
<td></td>
<td>AND</td>
</tr>
<tr>
<td></td>
<td>4. Non-Native Species</td>
</tr>
</tbody>
</table>
| | a. Management measures or harvesting prevent increases in stock size and further
spreading; and
b. If any stocking or seeding occurs, species is already established and ongoing stocking/seeding activity has been demonstrated not to contribute to growth or spread of non-native population.

| Ineffective | Management exceeds the standard of “critical” below, but [for at least 30% of the fishery’s main, primary targeted and retained native species/stocks by number):

1. Management effectiveness is unknown and it is **LIKELY** that the fishery is having serious negative impacts on retained populations (e.g., Criterion 1 and/or Criterion 2 is scored red due to concerns with the status of one or more main retained populations);

 OR

2. There is no management and it is **UNLIKELY** that the fishery is having serious, negative impacts on any retained populations (e.g., statuses of all main retained populations are known and none are scored red);

 OR

3. Management sets catch limits above scientifically recommended levels, or otherwise disregards scientific advice;

 OR

4. The fishery lacks management measures that are reasonably expected to be effective, appropriate strategies for rebuilding species of concern, or appropriate control of non-native fished species (where applicable) as detailed under “moderately effective” (#2-5) above.

| Critical | 1. Management strategy is insufficiently precautionary to protect retained populations or strategies have not been implemented successfully;

 OR

2. There is no management where clearly needed;

 OR

3. The fishery targets and/or regularly retains **overfished, depleted, endangered or threatened** species and the fishery is a **substantial contributor** to mortality of the

Comment [RP7]: For completeness, this has been added as the “highly effective” and “moderate” descriptions require at least 70% of the main species to be managed effectively; therefore if more than 30% of the species are not managed appropriately, then by default the score is ineffective.
species, and management lacks an adequate rebuilding or recovery strategy and/or effective practices designed to limit mortality of these species (for example, overfishing is occurring);

OR

4. For non-native species, there are known or likely negative impacts on the ecosystem, fishery is maintained in part through stocking/seeding/etc., and/or stock size or further spread are not controlled by harvesting or other strategies.

OR

5. Fishery management does not comply with relevant legal requirements;

OR

6. Substantial Illegal fishing; 25% or more of the product is caught illegally

Factor 3.2 Bycatch Strategy

Goal: Management strategy prevents negative population impacts on bycatch species, particularly species of concern.

<table>
<thead>
<tr>
<th>3.2: Bycatch Strategy</th>
<th>Description</th>
</tr>
</thead>
</table>
| Highly Effective | Fishery has no or very low (<5%) bycatch (including any unintended or unmanaged catch, even if retained), with no bycatch of species of concern; or if species of concern are caught or the fishery is not highly selective (i.e., rate of discards, non-target or unmanaged catch exceeds 5% of landings):

1. The fishery has a highly effective or precautionary strategy and goals designed to minimize the impacts of the fishery on bycatch species;

 AND

2. There is evidence that either
 a. the strategy is being implemented successfully (e.g., there is a well-known track record of consistently setting conservative bycatch limits based on quality information and advice about bycatch); or
 b. bycatch is minimized to the greatest extent possible, especially for vulnerable species such as sharks, seabirds, turtles, and marine mammals, through mitigation measures that have been shown to be highly effective (see Appendix 4 for guidance); |
3. Fishery is not a leading cause of a high level of mortality for any species of concern (e.g., not a Category I fishery for marine mammal bycatch);

AND

4. If a fishery has a demonstrated concern with or a significant likelihood of ghost fishing (of target or non-target species), there is a comprehensive strategy to address ghost fishing that includes the following:
 a. measures to assess, minimize, and mitigate the impacts of derelict gear from the fishery (e.g., gear modifications, gear-tending procedures, etc.), or
 b. a time-sensitive requirement for reporting gear loss and location

<table>
<thead>
<tr>
<th>Moderately Effective</th>
<th>IF species of concern are caught or the fishery is not highly selective (i.e., rate of discards, non-target or unmanaged catch exceeds 5% of landings),</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The fishery must have some bycatch management measures in place to meet the “moderately effective” threshold (including implementing an appropriate Take Reduction Plan for U.S fisheries listed as Category I for marine mammal bycatch, and measures to mitigate ghost fishing if there is a demonstrated concern with or high likelihood of ghost fishing), BUT either</td>
</tr>
<tr>
<td></td>
<td>1. The strategy or implementation effectiveness is under debate or uncertain (e.g., bycatch limits are imposed based on assumptions, but limits are disputed or unsure);</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>2. Bycatch reduction techniques are used but are of unknown or uncertain effectiveness;</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>3. Management has not been in place long enough to evaluate its effectiveness or is unknown;</td>
</tr>
<tr>
<td></td>
<td>OR</td>
</tr>
<tr>
<td></td>
<td>4. Where applicable, effectiveness of measures to mitigate ghost fishing is unknown</td>
</tr>
</tbody>
</table>
Factor 3.3 Scientific Research and Monitoring

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
</tr>
<tr>
<td>1. The management process uses an independent and up-to-date scientific stock assessment or analysis, or other appropriate method that seeks knowledge related to stock status;</td>
</tr>
<tr>
<td>AND</td>
</tr>
<tr>
<td>2. This assessment is complete and robust, is peer reviewed by a scientific body, includes all major, relevant sources of fishing mortality (e.g., recreational fishing), and contains both fishery-independent data, including abundance data, and appropriate fishery-dependent data;</td>
</tr>
<tr>
<td>AND</td>
</tr>
</tbody>
</table>
3. Abundance and geographic range of any non-native target species are monitored,
 AND

4. Bycatch is appropriately monitored;
 AND

5. *Adequate observer coverage or video monitoring* and data collection and analysis
 are sufficient to ensure that goals are being met for both bycatch and retained
 species;
 AND

6. If applicable, 100% of at-sea transshipments must be observed;
 AND

7. Fisheries, especially those using pots/traps and gillnets (and other fisheries
 employing gears which have demonstrated ghost gear impacts), must collect data
 on lost gear or otherwise demonstrate a method to include ghost fishing impacts in
 the assessment of fishing mortality.

| **Moderately Effective** | 1. Some data related to stock abundance and health are collected and analyzed. Data
| | may not be sufficient to meet ‘highly effective’ category, but are used to monitor
| | and maintain the stock (including monitoring of bycatch) using appropriate data-
| | limited assessment methods and management strategies;
| | **OR**
| | 2. Management relies on an appropriate strategy that requires only minimal
| | monitoring (e.g., large protected areas including spawning habitat, and other
| | appropriate “data-less” management techniques); |

| **Ineffective** | 1. No data or very minimal data are collected or analyzed; appropriate data-limited
| | assessment and management methods are not used (see *Appendix 7*);
| | **OR**
| | 2.—Bycatch is *not monitored* or assessment is insufficient given potential bycatch
| | impacts of the fishery (e.g. observer coverage may be needed for fisheries
| | encountering endangered species, whereas fisheries with selective gear.
comprehensive studies demonstrating low concern with bycatch or data-limited management strategies such as area closures that limit bycatch potential may not need a high level of monitoring) and fishery is not using a highly selective gear;

3.2. OR

4.3. The fishery’s main, targeted species are unassessed and regulations to constrain fishing mortality for these species are lacking.

Factor 3.4 Enforcement of Management Regulations

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
</tr>
<tr>
<td>1. The appropriate permits, regulations, requirements of biological opinions, (or equivalent documents for non-U.S. fisheries) and agreed-upon, voluntary arrangements are regularly enforced and independently verified, including VMS, logbook reports, dockside monitoring and other similar measures appropriate to the fishery; AND 2. Capacity to control, ensure, and report compliance are appropriate to the scale of the fishery.</td>
</tr>
<tr>
<td>Moderately Effective</td>
</tr>
<tr>
<td>Enforcement and/or monitoring are in place to ensure goals are successfully met, although effectiveness of enforcement/monitoring may be uncertain (e.g., regulations are enforced by fishing industry or by voluntary/honor system, but without regular independent scrutiny).</td>
</tr>
<tr>
<td>Ineffective</td>
</tr>
<tr>
<td>Enforcement and/or monitoring is lacking or believed to be inadequate, or compliance is known to be poor.</td>
</tr>
</tbody>
</table>

Factor 3.5 Stakeholder Inclusion

<table>
<thead>
<tr>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly Effective</td>
</tr>
<tr>
<td>The management process is transparent and includes stakeholder input, which means managers: 1. Involve all major user groups;</td>
</tr>
</tbody>
</table>

February 12, 2016
2. Provide a mechanism to effectively address user conflicts

3. Encourage high participation in both the assessment and management process;

4. Make transparent decisions;

5. There is an effective and constructive relationship between managers, scientists, and fishermen.

Moderately Effective

1. The management process is transparent and includes stakeholder input,

 BUT

2. All user groups are not effectively considered, or there is no mechanism in place to effectively address user conflicts.

Ineffective

1. Stakeholders are not included in decision-making;

 OR

2. Decisions are not made transparently.

Step 2: Assign a rating and a score for management effectiveness (Criterion 3) based on the five factors rated above.

<table>
<thead>
<tr>
<th>Conservation Concern:</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>Meets or exceeds the standard of ‘highly effective’ management for all five factors</td>
<td>5</td>
</tr>
</tbody>
</table>
| **Low** | 1. Meets or exceeds all the standards for ‘moderately effective’ management for all five subfactors;

 AND

2. Meets or exceeds the standard of ‘highly effective’ management for, at a minimum, “management strategy and implementation” (3.1)

 BUT

3. At least one other factor is not ‘highly effective.’ | 4 |
| **Moderate** | 1. Meets or exceeds all the standards for ‘moderately effective’ | 3 |
Criterion 3 Score and Rating

Rating is based on the Score for Criterion 3 as follows:
- **Green** if >3.2
- **Yellow** if >2.2 and ≤3.2
- **Red** if ≥1 and ≤2.2

Rating is **Critical** if scored a 0.

Criterion 4 – Impacts on the Habitat and Ecosystem

Overview: Criterion 4 includes an assessment of impacts on the seafloor habitat, and other indirect ecosystem impacts with a focus on food web/trophic impacts. Factor 4.1a scores a fishery’s likely impact on the seafloor habitat based on gear type and substrate, while 4.1b allows the fishery to improve on that score due to mitigation efforts such as gear modification and spatial closures. Factor 4.2 focuses on food web impacts and the use of ecosystem-based management to avoid negative trophic impacts.

Public comment guidance – Proposed edits in Criterion 4 are shown below in tracked changes and reflect clarifications only. They would not materially affect the outcome of any assessments.

Guiding principles

Avoid negative impacts on the structure, function or associated biota of marine habitats where fishing occurs. The fishery does not adversely affect the physical structure of the seafloor or associated biological communities.
If high-impact gears (e.g. trawls, dredges) are used, vulnerable seafloor habitats (e.g. corals, seamounts) are not fished, and potential damage to the seafloor is mitigated through substantial spatial protection, gear modifications and/or other highly effective methods.

Maintain the trophic role of all marine life. All stocks are maintained at levels that allow them to fulfill their ecological role and to maintain a functioning ecosystem and food web, as informed by the best available science.

Do not result in harmful ecological changes such as reduction of dependent predator populations, trophic cascades, or phase shifts. Fishing activities must not result in harmful changes such as depletion of dependent predators, trophic cascades, or phase shifts.

This may require fishing certain species (e.g., forage species) well below maximum sustainable yield and maintaining populations of these species well above the biomass that produces maximum sustainable yield.

Ensure that any enhancement activities and fishing activities on enhanced stocks do not negatively affect the diversity, abundance, productivity, or genetic integrity of wild stocks. Any enhancement activities are conducted at levels that do not negatively affect wild stocks by reducing diversity, abundance or genetic integrity.

Management of fisheries targeting enhanced stocks ensure that there are no negative impacts on the wild stocks, in line with the guiding principles described above, as a result of the fisheries.

Enhancement activities do not negatively affect the ecosystem through density dependent competition or any other means, as informed by the best available science.

Follow the principles of ecosystem-based fisheries management. The fishery is managed to ensure the integrity of the entire ecosystem, rather than solely focusing on maintenance of single species stock productivity. To the extent allowed by the current state of the science, ecological interactions affected by the fishery are understood and protected, and the structure and function of the ecosystem is maintained.

Assessment instructions
Address Factor 4.1a–4.1b for all fishing gears separately.

Factor 4.1a Physical Impact of Fishing Gear on the Habitat/Substrate

Goal: The fishery does not adversely impact the physical structure of the ocean habitat, seafloor or associated biological communities.

Instructions: Fishing gears that do not contact the seafloor score 5 for this criterion, and Factor 4.1b can be skipped. Use the table below to assign a score for gear impacts (*Appendix 5* provides further guidance). If gear type is not listed in the table, use the score for the most similar gear type in terms of extent of bottom contact. Note that if it can be demonstrated that a specific gear is significantly different or has been significantly modified, it can be scored accordingly. Seafood Watch will not assess a fishery using destructive practices such as explosives or cyanide regardless of habitat type and management actions; therefore, those fishing methods are not included in the table. Where multiple
habitat types are commonly encountered, and/or the habitat classification is uncertain, score conservatively according to the most sensitive plausible habitat type. See Appendix 5 for further guidance and the methods used in developing the table below.

<table>
<thead>
<tr>
<th>Description</th>
<th>SFW score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gear does not contact bottom; fishing for a pelagic/open water species</td>
<td>5</td>
</tr>
<tr>
<td>1. Vertical line fished in contact with the bottom; OR</td>
<td></td>
</tr>
<tr>
<td>2. Vertical line used to fish for a benthic/demersal or reef-associated species</td>
<td>4</td>
</tr>
<tr>
<td>1. Bottom gillnet, trap, bottom longline except on rocky reef/boulder and corals; or</td>
<td>3</td>
</tr>
<tr>
<td>2. Bottom seine (on mud/sand only); or</td>
<td></td>
</tr>
<tr>
<td>3. Midwater trawl that is known to contact bottom occasionally (<25% of the time); or</td>
<td></td>
</tr>
<tr>
<td>4. Purse seine known to commonly contact bottom</td>
<td></td>
</tr>
<tr>
<td>1. Scallop dredge on mud and sand; or</td>
<td>2</td>
</tr>
<tr>
<td>2. Bottom gillnet, trap, bottom longline on boulder or coral reef; or</td>
<td></td>
</tr>
<tr>
<td>3. Known trampling of coral reef habitat occurs; or</td>
<td></td>
</tr>
<tr>
<td>4. Bottom seine (except on mud/sand); or</td>
<td></td>
</tr>
<tr>
<td>5. Bottom trawl (mud and sand, or shallow gravel) (includes midwater trawl known to commonly contact bottom)</td>
<td></td>
</tr>
<tr>
<td>1. Hydraulic clam dredge; or</td>
<td>1</td>
</tr>
<tr>
<td>2. Scallop dredge on gravel, cobble or boulder; or</td>
<td></td>
</tr>
<tr>
<td>3. Trawl on cobble or boulder, or low energy (>60 m) gravel; or</td>
<td></td>
</tr>
<tr>
<td>4. Bottom trawl or dredge used primarily on mud/sand (or to catch a species that associates with mud/sand habitat), but information is limited and there is the potential for the gear to contact sensitive habitat</td>
<td></td>
</tr>
<tr>
<td>Dredge or trawl on deep-sea corals or other biogenic habitat (such as eelgrass and maerl)</td>
<td>0</td>
</tr>
</tbody>
</table>

Factor 4.1b Modifying Factor: Mitigation of Gear Impacts

Goal: *Damage to the seafloor is mitigated through protection of sensitive or vulnerable seafloor habitats, and limits on the spatial footprint of fishing on fishing effort.*

Instructions: Assess Factor 4.1b only for fishing gear that contacts the bottom. Scores from Factor 4.1b can only improve the base score from 4.1a. A high level of certainty is required to score a strong or moderate mitigation measure, e.g., good quality seafloor maps, VMS and/or observer coverage is required to document that spatial measures are effective and enforced. Further guidance can be found in Appendix 6.
Assess the fishery management’s efforts to mitigate the fishery’s impact on the benthic habitat. **Factor 4.1b** allows the habitat score to increase, based on the strength of mitigation measures, by the number of bonus points specified in the table.

1. At least 50% of the representative habitat is protected from the gear type used in the fishery under assessment (see Appendix 6); **OR**

2. a. For trawl/dredge fisheries, expansion of the fishery footprint into untrawled/undredged habitat is prohibited. A rotational strategy of habitat protection if deemed appropriate is acceptable; **and**

 b. Fishing intensity is constrained to be sufficiently low. Must have scientific evidence (using knowledge of the resilience of the habitat and the frequency of fishing impacts from the gear type used in the fishery under assessment (see Appendix 6)), that at least 50% of the representative habitat is in a recovered state and will remain so under current management; **and**

 c. Vulnerable habitats are strongly protected; **OR**

3. a. Gear is specifically designed to reduce impacts on the seafloor, **and**

 b. There is scientific evidence that these modifications are effective, **and**

 c. Gear modifications are used on the majority of vessels; **OR**

4. Other measures are in place that have been demonstrated to be highly effective in reducing the impact of the fishing gear, which may include an effective combination of both “moderate” measures described below, *e.g.*, gear modifications + spatial protection.

<table>
<thead>
<tr>
<th>Scoring for Factor 4.1: Impact on the Habitat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. a. A substantial proportion of all representative habitats are protected from all bottom contact, and</td>
</tr>
<tr>
<td>b. For trawl/dredge fisheries, expansion of the fishery’s footprint into untrawled/undredged habitat is prohibited (note: this does not prohibit a rotational strategy of habitat protection if deemed appropriate), and</td>
</tr>
<tr>
<td>c. Vulnerable habitats are strongly protected; OR</td>
</tr>
<tr>
<td>2. Gear modifications or other measures are in use that are reasonably expected to be effective.</td>
</tr>
</tbody>
</table>

Does not meet standard for +0.5 above, or **+0**

Not applicable because gear used is benign and fishery received a score of “5” for 4.1a. **+0**
The score for Factor 4.1 is the sum of the score for 4.1a and the score for 4.1b. The category name for 4.1 is assigned based on score ranges, as below:

<table>
<thead>
<tr>
<th>Score (Sum of 4.1a and 4.1b)</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>>3.2</td>
<td>Low Concern</td>
</tr>
<tr>
<td>>2.2 and ≤3.2</td>
<td>Moderate Concern</td>
</tr>
<tr>
<td>≤2.2</td>
<td>High Concern</td>
</tr>
</tbody>
</table>

Factor 4.2 Ecosystem-based Fisheries Management

Goal: *All stocks are maintained at levels that allow them to fulfill their ecological role and to maintain a functioning ecosystem and food web.* Fishing activities should not seriously reduce ecosystem services provided by any retained species or result in harmful changes such as trophic cascades, phase shifts or reduction of genetic diversity. Even non-native species should be considered with respect to ecosystem impacts. If a fishery is managed in order to eradicate a non-native, the potential impacts of that strategy on native species in the ecosystem should be considered and rated below.

Instructions: Assign an ecosystem-based management score for the fishery.

<table>
<thead>
<tr>
<th>Conservation Concern</th>
<th>Description</th>
<th>Score</th>
</tr>
</thead>
</table>
| Very Low | 1. a. There are policies in place (e.g. harvest control rules) that are effective at protecting ecosystem functioning and accounting for species’ ecological role, and
 b. Precautionary and effective spatial management is used, e.g. to protect spawning areas, prevent localized depletion, and protect important foraging areas for predators of fished species, if applicable;
 OR
 2. An ecosystem study has been conducted and it has been scientifically demonstrated that the fishery has no unacceptable ecological and/or genetic impacts;
 AND
 3. For fisheries on non-native species, policies in place to manage the fishery and/or control the spread of the species do not have long-term, adverse effects on native species. | 5 |
| Low | 1. a. Policies are in place to protect ecosystem functioning and account for capture species’ ecological role but have not yet proven to be effective, and
 b. Spatial management is used to protect ecosystem functioning; and
 c. Detrimental food web impacts are unlikely | 4 |
AND

2. For fisheries on non-native species, policies in place to manage the fishery and/or control the spread of the species do not have long-term, adverse effects on native species.

<table>
<thead>
<tr>
<th>Score</th>
<th>Criterion</th>
</tr>
</thead>
</table>
| Moderate | 1. The fishery lacks spatial management or other policies to protect ecosystem functioning and account for capture species’ ecological role but detrimental food web impacts are not likely;
OR
2. Detrimental food web impacts are possible, and there is some ecosystem-based management in place; however stronger policies may be needed to fully protect the ecological role of harvested species; OR
3. For fisheries on non-native species, the policies to manage the fishery and/or control the spread of the non-native species have an unknown effect on native species. |
| 3 | |
| High | 1. a. The fishery lacks spatial management or other policies to protect ecosystem functioning and account for capture species’ ecological role, and
b. The likelihood of trophic cascades, alternative stable states, or other detrimental food web impacts resulting from the fishery are high, but conclusive scientific evidence specifically related to the fishery are lacking;
OR
2. For fisheries on non-native species, policies in place to manage the fishery and/or control the spread of the species have adverse effects on native species. |
| 2 | |
| Very High | Scientifically demonstrated trophic cascades, alternate stable states, or other detrimental food web impacts are resulting from the fishery. |
| 1 | |

Criterion 4 Score and Rating

Score = Geometric Mean (Factors 4.1a+4.1b, Factor 4.2)

Rating is based on the Score as follows:
- >3.2 = Green
- >2.2 and ≤3.2 = Yellow
• $\leq 2.2 = \text{Red}$

Overall Score and Final Recommendation

Overview: The final scoring system combines the individual criterion scores to produce a numerical final score from 0-5, but also applies decision rules based on the number of “high concerns,” i.e., “red” scoring criteria as outlined below.

Specifics: The following sections show how the final score and final recommendation are calculated from the individual criterion scores. It is the current philosophy of the SFW criteria that regardless of the final numerical score, if there is one red criterion (with a numerical score ≤ 2.2), then the highest possible final recommendation is a yellow “Good Alternative.” If there are two red criteria, then the overall final recommendation will be red “Avoid” regardless of the numerical score. If there is one or more “critical concern” then the final recommendation is red “Avoid” regardless of the numerical score.

In addition, we are proposing a new decision rule that a fishery must score a green in either Criterion 1 or Criterion 3 (or both) in order to be a “Best Choice” overall.

Final Score = geometric mean of the five Scores (Criterion 1, Criterion 2, Criterion 3, Criterion 4, Criterion 5).

The overall recommendation is as follows:

- **Best Choice** = Final Score >3.2, and either Criterion 1 or Criterion 3 (or both) is Green, and no Red Criteria, and no Critical scores

- **Good Alternative** = Final score >2.2, and no more than one Red Criterion, and no Critical scores, and does not meet the criteria for Best Choice (above)

- **Avoid** = Final Score ≤ 2.2, or two or more Red Criteria, or one or more Critical scores.
Adequate observer coverage or video monitoring:
Observer coverage required for adequate monitoring depends on the rarity of the species caught, with fisheries that interact with rare species requiring higher coverage (Babcock et al. 2003). Similarly, species that are “clumped” instead of being evenly distributed across the ocean also require higher levels of coverage. In addition, fisheries using many different gear types and fishing methods require higher levels of coverage. Poorly sampled areas, gears, and seasons can bias results. For these reasons, the exact level of coverage required for a particular fishery depends on the associated discard and target species, the species’ distribution within the fishery, the absolute number of sets, how common the bycatch is, and whether that level of bycatch is problematic for the species (Babcock et al. 2003). The analyst will need to determine what level of observer coverage is adequate for the fishery of interest; coverage of 17–20% (or as high as 50% for rare species bycatch) may be required in some cases but may not be necessary in all cases. There needs to be a decent sample size in terms of absolute sets and catches. If the observer coverage is sufficient to provide reliable bycatch estimates for priority species in that fishery, then the coverage is good, regardless of the percent (and vice-versa). Must present evidence that video monitoring meets the criteria for “adequate observer coverage” as defined here.

Appropriate reference points:
Determination of the appropriateness of reference points depends on two questions:

1) Is the goal appropriate? Appropriate biomass reference points are designed with the goal of maintaining stock biomass at or above the point where yield is maximized (target reference points; TRPs) and safely above the point where recruitment is impaired (limit reference points; LRP s). Fishing mortality reference points should be designed with the goal of ensuring that catch does not exceed sustainable yield and has a very low likelihood of leading to depletion of the stock in the future.

2) Is the calculation of the reference points credible? There may be a concern if reference points have been lowered repeatedly or if there is scientific controversy regarding the reference points or the calculations of biomass and fishing mortality relative to reference points. See the guidance for each type of reference point below and in Appendix 1.

Target reference point: Reference points need to be evaluated on a case-by-case basis, but in general: Biomass target reference points (TRPs) should generally not be lower than BMSY or approximately B35–B40%. TRPs below about B35% require strong scientific rationale. Deterministically calculated BMSY values below about B35% may not be acceptable, as deterministic reference points may not be adequately precautionary accounting for stochasticity and environmental variability. See Appendix 1 for more details.

Limit reference point: The point where recruitment would be impaired. Reference points need to be evaluated on a case-by-case basis, but in general: Biomass limit reference points (LRPs) should be no less than ½ BMSY, or ½ an appropriate target reference point such as B40%. LRPs below about B20% or ½ BMSY require strong scientific rationale. Limit reference points set at 50% of deterministically calculated BMSY values below about B35% may not be acceptable, as deterministic reference points may not be adequately precautionary accounting for stochasticity and environmental variability.
Spawning potential ratio/fraction of lifetime egg production (SPR/FLEP) reference point: The SPR/FLEP limit reference point should either be derived through scientific analysis to be at or above replacement %SPR for the species (the threshold level of SPR necessary for replacement) based on its productivity and S-R relationship (viz., Mace and Sissenwine 1993), or should be set at about 35–40% of LEP. An exception can be made for species with very low inherent productivity (e.g., rockfish, sharks), in which case a reference point of 50–60% of LEP is more appropriate (Mace and Sissenwine 1993, Myers et al. 1999, Clark 2002, Botsford and Parma 2005).

Appropriate reference points (given the species’ ecological role): For certain taxa that have an exceptionally important role in the ecosystem, reference points should be based on ecosystem considerations (i.e. maintaining enough biomass to allow the species to fulfill its ecological role), rather than MSY or single-species considerations. For forage species (defined as in the Lenfest Forage Fish Task Force report, Box 1.1), reference points should be based on the recommendations of the Lenfest Forage Fish Task Force as follows: in fisheries with an intermediate level of information (which will include most well-managed forage fisheries), there must be at least 40% of virgin or unfished biomass (B_0) left in the water, and fishing mortality should be no higher than 50% of F_{MSY}. Low information fisheries should leave at least 80% of B_0 in the water. High information fisheries (which have a high information not just on the fished stock, but the full ecosystem), may exceed these reference points if justified by the science, but in no case should fishing mortality exceed 75% of F_{MSY} or biomass fall below 30% of B_0.

Bycatch: Seafood Watch defines bycatch as all fisheries-related mortality or injury other than the retained catch. Examples include discards, endangered or threatened species catch, pre-catch mortality and ghost fishing. All discards, including those released alive, are considered bycatch unless there is valid scientific evidence of high post-release survival and there is no documented evidence of negative impacts at the population level.

Critically endangered: An IUCN category for listing endangered species. A taxon is considered “critically endangered” (CE) when it faces an extremely high risk of extinction in the wild in the immediate future, as defined by any of the relevant IUCN criteria for “critically endangered” (FAO Glossary; IUCN).

Data-moderate: Reliable estimates of MSY-related quantities are either unavailable or not useful due to life history, a weak stock-recruit relationship, high recruitment variability, etc. Reliable estimates of current stock size, life history variables and fishery parameters exist. Stock assessments include some characterization of uncertainty (Restrepo and Powers 1998; Restrepo et al. 1998).

Data-poor: Refers to fisheries for which there are no estimates of MSY, stock size, or certain life history traits. There may be minimal or no stock assessment data, and uncertainty measurements may be qualitative only (Restrepo and Powers 1998; Restrepo et al. 1998).

Data-rich:
Refers to fisheries with reliable estimates of MSY-related quantities and current stock size. Stock assessments are sophisticated and account for uncertainty (Restrepo and Powers 1998; Restrepo et al. 1998).

Depleted:
A stock at a very low level of abundance compared to historical levels, with dramatically reduced spawning biomass and reproductive capacity. Such stocks require particularly energetic rebuilding strategies. Recovery times depend on present conditions, levels of protection and environmental conditions. May refer also to marine mammals listed as “depleted” under the Marine Mammal Protection Act (FAO Glossary). Classifications of “overfished” or “depleted” are based on assessments by the management agency and/or FAO, but analysts can use judgment to override the classification, especially where the prior assessment may be out of date (also includes IUCN listings of “near threatened”, “special concern” and “vulnerable”). Inclusion in this classification based on designations such as “stock of concern” is determined on a case-by-case basis, as such terms are not used consistently among management agencies. Stocks should be classified as “depleted” if the stock is believed to be at a low level of abundance such that reproduction is impaired or is likely to be below an appropriate limit reference point. Marine mammals classified as “depleted” under the Marine Mammal Protection Act fall into this category, if not listed as endangered or threatened. Also includes stocks most likely (>50% chance) below the level where recruitment or productivity is impaired. Note: Official IUCN listings should be overridden by more recent and/or more specific classifications, where available (e.g., NMFS stock assessment showing stock is above target levels).

Ecological role:
The natural trophic role of a stock within the ecosystem under consideration in an assessment (MSC 2010).

Effective:
Management or mitigation strategies are defined as “effective” if a) the management goal is sufficient to maintain the structure and function of affected ecosystems in the long-term, and b) there is scientific evidence that they are meeting these goals.

Effective mitigation or gear modification:
A strategy that is “effective” as defined above, either in the fishery being assessed or as demonstrated in a very similar system (See Appendix 3 and Appendix 4 for a partial list of effective mitigations; this list will be continually developed).

Endangered/threatened:
Taxa in danger of extinction and whose survival is unlikely if causal factors continue operating. Included are taxa whose numbers have been drastically reduced to a critical level or whose habitats have been so drastically impaired that they are deemed to be in immediate danger of extinction (FAO Fisheries Glossary). This classification includes taxa listed as “endangered” or “critically endangered” by IUCN or “threatened”, “endangered” or “critically endangered” by an international, national or state government body (e.g., Canada’s Committee on the Status of Endangered Wildlife in Canada – COSEWIC, and Species at Risk Act - SARA), as well as taxa listed under CITES Appendix I. This classification does not include species listed by the IUCN as “vulnerable” or “near threatened”. Marine mammals listed as “strategic” under the Marine Mammal Protection Act are also considered as endangered/threatened if they are listed because “based on the best available scientific information,
[the stock] is declining and is likely to be listed as a threatened species under the Endangered Species Act of 1973 [ESA, 16 U.S.C. 1531 et seq.] within the foreseeable future." However, marine mammal stocks listed as "strategic" because "the level of direct human-caused mortality exceeds the potential biological removal level," or because they are listed as "depleted" under the Marine Mammal Protection Act, are instead classified as species of concern.

Exceptional importance to the ecosystem:
A species that plays a key role in the ecosystem that may be disrupted by typical levels of harvesting, including: keystone species (those that have been shown or are expected to have community-level effects disproportionate to their biomass), foundation species (habitat-forming species, e.g., oyster beds), basal prey species (including krill and small pelagic forage species such as anchovies and sardines), and top predators, where the removal of a small number of the species could have serious ecosystem effects. Species that do not fall into any of these categories but that have been demonstrated to have an important ecological role impeded by harvest (e.g., studies demonstrating trophic cascades or ecosystem phase shifts due to harvesting) shall also be considered species of exceptional importance to the ecosystem (Paine 1995; Foley et al. 2010).

Fish Aggregating Device (FAD):
Any floating object strategically placed in the ocean to attract and aggregate fish (from http://www.nmfs.noaa.gov/pr/interactions/gear/fads.htm). FADs may be static (anchored) or free-floating (untethered).

Fluctuating biomass:
- If a stock is trending upwards (based on the most recent assessment) and has just recently exceeded the target reference point (TRP), it can be rated as Very Low Concern. If a stock is not trending but is truly fluctuating around the TRP (exceeding in some years and falling short in others, but with no clear trend), it can be rated as Very Low Concern. However, if a stock is fluctuating around the limit reference point (LRP), it cannot be considered Very Low Concern.
- If a stock is trending downward and is currently below the TRP, the rating can be no better than Low Concern.
- If a stock is below the LRP, it is considered a High Concern.

Fluctuating fishing mortality:
- If F is trending downwards, or was previously above FM (or a suitable proxy) but has recently gone below FM (in the most recent assessment), fishing mortality should be rated as Low Concern.
- If F is fluctuating around FM, or if F has been consistently below FM and has just recently (in the latest assessment) risen above FM for just this one year (potentially due to management error or a new stock assessment and the consequent adjustment in reference points or estimates), fishing mortality should be rated as Moderate Concern.
- If F is trending upwards and has just risen above FM, fishing mortality should be rated as High Concern unless there is a substantial plan to bring F back down. Such a plan would need to differ substantially from the existing harvest control rules (HCR), as those evidently did not keep F at a sufficiently low level.

Ghost fishing:
Gear that is abandoned, lost, derelict, or discarded that continues to catch, entrap, or entangle marine
species.

Highly appropriate management strategy:

Management that is appropriate for the stock and harvest control rules takes into account major features of the species’ biology and the nature of the fishery. Such a management strategy incorporates the precautionary approach while also taking uncertainty into account and evaluating stock status relative to reference points, as these measures have been shown to be robust (modified from MSC 2010). As an example, if management is based on Total Allowable Catch, these limits are set below MSY and/or scientifically advised levels, accounting for uncertainty, and lowered if B<B_{MSY}. However, alternatives to TAC-based management, such as area-based (closures), 3S (size, sex and/or season limitations) or other appropriate methods may also apply (Appendix 3).

Historic high:

Refers to near-virgin biomass, or highest recorded biomass, if biomass estimates predate the start of intensive fishing. If a fishery has been historically depleted and then rebuilt, the rebuilt biomass is not considered a “historic high” even though it may be higher than historical levels.

Inherent vulnerability:

A stock’s vulnerability to overfishing based on inherent life history attributes that affect the stock’s productivity and may impede its ability to recover from fishing impacts. All sea turtles, marine mammals, and seabirds are considered “highly vulnerable”. Marine invertebrates’ vulnerability is based on the average of several attributes of inherent productivity.

One of the first key papers on this subject (Musick 1999) summarizes the results of an American Fisheries Society (AFS) workshop on the topic and offers proposed low, medium and high “productivity index parameters” (for marine fish species) based on available life history information: the intrinsic rate of increase r, the von Bertalanffy growth function k, fecundity, age at maturity and maximum age. Notably, although a species’ intrinsic rate of increase is identified as the most useful indicator, it is also difficult to estimate reliably and is often unavailable (Cheung et al. 2005). To enable more timely and less data-intensive and costly identification of vulnerable fish species, Cheung et al. (2005) used fuzzy logic theory to develop an index of the intrinsic vulnerability of marine fishes based on life history parameters: maximum length, age at first maturity, longevity, von Bertalanffy growth parameter K, natural mortality rate, fecundity, strength of spatial behavior and geographic range (input variables). The index also uses heuristic rules defined for the fuzzy logic functions to assign fish species to one of the following groups: very high, high, moderate or low level of intrinsic vulnerability.

In this framework, intrinsic vulnerability is also expressed by a numerical value between 1 and 100 with 100 being most vulnerable. This index of intrinsic vulnerability was then applied to over 1300 marine fish species to assess intrinsic vulnerability in the global fish catch (Cheung et al. 2007). FishBase, the online global database of fish, uses the numerical value from this index as a “vulnerability score” on the profiles of fish species for which it has been evaluated (Froese and Pauly 2010). Formerly, Seafood Watch used the FishBase vulnerability score to determine inherent vulnerability of fish species.
Large portion of the stock is protected:
At least 50% of the spawning stock is protected, for example through size/sex/season regulations or the inclusion of greater than 50% of the species’ habitat in marine reserves. Future guidance will improve the integration of marine reserve science into the criteria, based on ongoing research.

Likelihood:
Likely: 60% chance or greater, when quantitative data are available; may also be determined according to expert judgment and/or plausible argument (modified from MSC 2010 and based on guidance from MSC FAM Principle 2).

Probable: Greater than 50% chance; can be based on quantitative assessment, plausible evidence or expert judgment. Examples of “probable” occurrence for fishing mortality:

There may be some uncertainty or disagreement among various models; fishing mortality may be above 75% of a sustainable level and/or catch may be above 75% of a sustainable catch level (e.g., MSY) for stocks at B_{MSY}.

Main species:
A species is included in the assessment as a main species if:
- A common component of the catch (as guidance, >5% of the catch in most cases), or
- Overfished, endangered, threatened, undergoing overfishing, or otherwise a species of concern, where catch occurs regularly and may significantly contribute to the conservation concern (i.e. more than a negligible and/or sporadic level of catch) (as guidance, mortality of the species caused by this fishery is >5% of a sustainable level), or
- Fishery is one of the main sources of mortality for the species, including bait species if known (as guidance, approx. 20% or more of total mortality).
- If bait species are unknown and no other main species have been identified, then add ‘unknown finfish’ with an abundance score of 3 and a fishing mortality score of 3.

Managed appropriately:
Management uses best available science to implement policies that minimize the risk of overfishing or damaging the ecosystem, taking into account species vulnerability along with scientific and management uncertainty.

Negligible:
Mortality is insignificant or inconsequential relative to a sustainable level of total fishing mortality (e.g., MSY or PBR); less than or equal to 5% of a sustainable level of fishing mortality.

No management:
A fishery with no rules or standards for regulating fishing catch, effort or methods. Management does not need to be enforced through government regulation or official management agencies but may also include voluntary action taken by the fishery, as long as there is general compliance.

Non-native species:
A non-native organism is an organism occurring outside its natural past or present range and dispersal potential, including any parts of the organism that might survive and subsequently reproduce, whose dispersal to the non-native area is caused by direct human action (e.g., introduced through ballast water or intentional translocation of organisms to a new area, but not including indirect anthropogenic effects, such as range shifts due to climate change). Modified from Falk-Petersen et al 2006.

Overfished:
A stock is considered “overfished” when exploited past an explicit limit where abundance is considered too low to ensure safe reproduction. In many fisheries, the term “overfished” is used when biomass has been estimated below a biological reference point used to signify an “overfished condition”. The stock may remain overfished (i.e., with a biomass well below the agreed limit) for some time even though fishing mortality may have been reduced or suppressed (FAO Glossary). Classification as “overfished” or “depleted” (including IUCN listing as “near threatened”, “special concern” and “vulnerable”) is based on evaluation by the management agency and/or FAO, but an analyst can use judgment to override this classification, especially where the classification may be out of date as long as there is scientific justification for doing so. Inclusion in the “overfished” category based on designations such as “stock of concern” are determined on a case-by-case basis, as such terms are not used consistently among management agencies. Stocks should be classified as “overfished” if the stock is believed to be at such a low level of abundance that reproduction is impaired or is likely to be below an appropriate limit reference point. Marine mammals classified as “depleted” under the Marine Mammal Protection Act also fall into this category if not listed as endangered or threatened. Stocks that are most likely (>50% chance) below the level where recruitment or productivity is impaired are also considered “overfished”. Note: Official IUCN listings should be overridden by more recent and/or more specific classifications where available (e.g., NMFS stock assessment showing that a stock is above target levels).

Overfishing:
A generic term used to refer to a level of fishing effort or fishing mortality such that a reduction of effort would, in the medium term, lead to an increase in the total catch; or, a rate or level of fishing mortality that jeopardizes the capacity of a fishery to produce the maximum sustainable yield on a continuing basis. For long-lived species, overfishing (i.e., using excessive effort) starts well before the stock becomes overfished. Overfishing, as used in the Seafood Watch® criteria, can encompass biological or recruitment overfishing (but not necessarily economic or growth overfishing).

- **Biological overfishing:** Catching such a high proportion of one or all age classes in a fishery as to reduce yields and drive stock biomass and spawning potential below safe levels. In a surplus production model, biological overfishing occurs when fishing levels are higher than those required for extracting the Maximum Sustainable Yield (MSY) of a resource and recruitment starts to decrease.
- **Recruitment overfishing:** When the rate of fishing is (or has been) high enough to significantly reduce the annual recruitment to the exploitable stock. This situation is characterized by a greatly reduced spawning stock, a decreasing proportion of older fish in the catch and generally very low recruitment year after year. If prolonged, recruitment overfishing can lead to stock collapse, particularly under unfavorable environmental conditions.
- **Growth overfishing:** Occurs when too many small fish are being harvested too early through excessive fishing effort and poor selectivity (e.g., excessively small mesh sizes), and the fish are not given enough time to grow to the size at which maximum yield-per-recruit would be
obtained from the stock. Reduction of fishing mortality among juveniles, or their outright protection, would lead to an increase in yield from the fishery. Growth overfishing occurs when the fishing mortality rate is above F_{max} (in a yield-per-recruit model). This means that individual fish are caught before they have a chance to reach their maximum growth potential. Growth overfishing, by itself, does not affect the ability of a fish population to replace itself.

- **Economic overfishing**: Occurs when a fishery is generating no economic rent, primarily because an excessive level of fishing effort is applied in the fishery. This condition does not always imply biological overfishing.

(FAO Glossary; NOAA 1997)

Precautionary approach:
The precautionary approach involves the application of prudent foresight. Taking account of the uncertainties in fisheries systems and considering the need to take action with incomplete knowledge, the precautionary approach requires, inter alia: (i) consideration of the needs of future generations and avoidance of changes that are not potentially reversible; (ii) prior identification of undesirable outcomes and measures to avoid or correct them promptly; (iii) initiation of any necessary corrective measures without delay and on a timescale appropriate for the species’ biology; (iv) conservation of the productive capacity of the resource where the likely impact of resource use is uncertain; (v) maintenance of harvesting and processing capacities commensurate with estimated sustainable levels of the resource and containment of these capacities when resource productivity is highly uncertain; (vi) adherence to authorized management and periodic review practices for all fishing activities; (vii) establishment of legal and institutional frameworks for fishery management within which plans are implemented to address the above points for each fishery, and (ix) appropriate placement of the burden of proof by adhering to the requirements above (modified from FAO 1996).

Productivity is maintained/not impaired:
Fishing activity does not impact the stock, either through reduced abundance, changes in size, sex or age distribution, or reduction of reproductive capacity at age, to a degree that would diminish the growth and/or reproduction of the population over the long-term (multiple generations).

Productivity–susceptibility analysis (PSA):
Productivity-susceptibility analysis was originally developed to assess the sustainability of bycatch levels in Australia’s Northern Prawn fishery (Patrick et al. 2009), and has since been widely applied to assess vulnerability to fishing mortality for as number of fisheries worldwide. Productivity-susceptibility analysis is used by NOAA and the Australian Commonwealth Scientific Industrial Research Organization (CSIRO) to inform fisheries management. It also constitutes the basis of the risk-based framework used to evaluate data-poor fisheries for both fish and invertebrates under the Marine Stewardship Council Fishery Assessment Methodology (MSC FAM). The PSA approach allows the risk of overfishing to be assessed for any species based on predetermined attributes, even in the most data-poor situations.

The exact sets of productivity and susceptibility attributes vary between PSA methodologies, and different weighting of attributes can be employed based on relative contextual importance. Additionally, scoring thresholds can vary depending on the context in which PSA is employed. In the US methodology, productivity is defined as the capacity for a stock to recover once depleted, which is
largely a function of the life history characteristics of the species. Generally, productivity attributes are similar to the life history parameters used for the above index of intrinsic vulnerability.

While PSA analysis is a widely accepted approach for evaluating risk of overexploitation of a fished species, for the purposes of Seafood Watch assessments it is useful to separate the productivity attributes—which are intrinsic to a species and neither dependent on nor influenced by fishery practices—from the susceptibility attributes. Fisheries may influence the susceptibility of impacted stocks through the choice of gear, bait species, hook design, mesh size, area or seasonal closures, and other management measures. In addition, where detailed information on fishing mortality (e.g., estimates of F or harvest rates) is available, these data provide a more complete picture of the fishery impact that the susceptibility attributes are designed to predict.

Reasonable timeframe (for rebuilding):
Dependent on the species’ biology and degree of depletion, but generally within 10 years, except in cases where the stock could not rebuild within 10 years even in the absence of fishing. In such cases, a reasonable timeframe is within the number of years it would take the stock to rebuild without fishing, plus one generation, as described in Restrepo et al. (1998).

Recent stock assessment:
As a rule of thumb, stock assessments or updates conducted within the last five years are considered to be recent. If an assessment showing the biomass is above target reference points is >5 years old, but <10 years old, it should be scored as a low concern in most cases, but with consideration of trends and time series; e.g., if the population has been stable and was well above the TRP in the last assessment, and the species is not one that fluctuates greatly in abundance, and the fishery hasn’t changed dramatically in recent years, a very low concern may be justified. If the stock assessment is very out of date – as a rule of thumb, >10 years old – the stock status should be considered unknown and rated accordingly. It may be considered unknown even when the assessment is less than 10 years old in circumstances where the stock was previously very close to reference points or is very dynamic. If the most recent stock assessment was not accepted by the relevant scientific body for any reason, the stock should be considered unknown.

Recruitment is impaired:
Fishing activity impacts the stock—either through reduced abundance, changes in size, sex or age distribution, or reduction of reproductive capacity at age—to a degree that will diminish the growth and/or reproduction of the population over the long-term (multiple generations); or, the stock is below an appropriate limit reference point, if one is defined.

Regularly monitored:
Fishery-independent surveys of stocks, or other reliable assessments of abundance, are conducted at least every three years.

Relevant legal requirements:
These include state, national and international laws which pertain to the fishery.

Reliable data:
Data produced or verified by an independent third party. Reliable data may include government reports, peer-reviewed science, audit reports, etc. Data are not considered reliable if significant scientific controversy exists over the data, or if data are old or otherwise unlikely to represent current conditions (e.g., survey data is several years old and fishing mortality has increased since the last survey).

Species of concern:
Species about which management has some concerns regarding status and threats, but for which insufficient information is available to indicate a need to list the species as endangered. In the U.S., this may include species for which NMFS has determined, following a biological status review, that listing under the ESA is “not warranted,” pursuant to ESA section 4(b)(3)(B)(i), but for which significant concerns or uncertainties remain regarding their status and/or threats. Species can qualify as both “species of concern” and “candidate species” (http://www.nmfs.noaa.gov/pr/glossary.htm#s). In addition, marine mammal stocks listed as “strategic” under the Marine Mammal Protection Act are classified as species of concern. The terms “species of concern” or “stock of concern” are used similarly by other federal and state management bodies.

Stakeholder input:
A stakeholder is an individual, group or organization that has an interest in, or could be affected by, the management of a fishery (modified from MSC 2010). Stakeholder input may include: involvement in all key aspects of fisheries management from stock assessment and setting research priorities to enforcement and decision-making. In addition, stakeholders may take ownership of decisions and greater responsibility for the wellbeing of individual fisheries (Smith et al 1999). Effective stakeholder engagement requires that the management system has a consultation processes open to interested and affected parties and that roles and responsibilities of the stakeholders are clear and understood by all relevant parties (modified from MSC 2010).

Stock:
A self-sustaining population that is not strongly linked to other populations through interbreeding, immigration or emigration. A single fishery may capture multiple stocks of one or multiple species. Stocks can be targeted or non-targeted, retained or discarded, or some combination thereof (e.g., juveniles are discarded and adults are retained).

Ideally, the management unit of “stock” should correspond to the biological unit. However, often the fisheries management unit of “stock” may not be the same as the biological unit. If multiple biological stocks are managed as one, and there is insufficient information to assess the stock status of each biological stock, the management unit is assessed. This situation detracts from the fishery’s “quality of information” score, as it makes it impossible to assess individual stocks’ health. If management occurs on a finer scale than biological stocks so that multiple management unit stocks compose one interbreeding population, the health and abundance of the biological stock should be assessed as a whole based on information aggregated across the management units. The effectiveness of management can be assessed at the finest scale for which meaningful and verifiable differences in management practice exist.

Substantial contributor:
A fishery is a substantial contributor to impacts affecting a population, ecosystem or habitat if the fishery is a main contributor, or one of multiple contributors of a similar magnitude, to cumulative fishing mortality. Examples of a fishery that is not a substantial contributor include: (a) catch of the
species is a rare or minor component of the catch in this fishery and the fishery is a small contributor to cumulative mortality, relative to other fisheries, particularly because the fishery operates or is managed in a way that reduces its impact. However, if there has been a jeopardy determination for that stock in the fishery being assessed it should be considered a substantial contributor regardless of this definition. This applies to species assessed under Criterion 2 only.

Substantial proportion of habitat:
Refers to a condition when at least 20% of each representative habitat (where representative habitats can be delineated by substrate, bathymetry, and/or community assemblages), within both the range of the targeted stock(s) and the regulatory boundaries of the fishery under consideration (i.e., within the national EEZ for the fishery under consideration), is completely protected from fishing with gear types that impact the habitat in that fishery.

Susceptibility
A stock’s capacity to be impacted by the fishery under consideration, depending on factors such as the stock’s likelihood to be captured by the fishing gear. The susceptibility score is based on tables from MSC’s Productivity-Susceptibility Analysis framework (see Criterion 1.1). Examples of low susceptibility include: low overlap between the geographic or depth range of species and the location of the fishery; the species’ preferred habitat is not targeted by fishery; the species is smaller than the net mesh size as an adult, is not attracted to the bait used, or is otherwise not selected by fishing gear; or strong spatial protection or other measures in place specifically to avoid catch of the species.

Sustainable level (of fishing mortality):
A level of fishing mortality that will not reduce stock below the point where recruitment is impaired, i.e., above F reference points, where defined. The F limit reference points should be around either F_{MSY} or F_{35-40} for moderately productive stocks; low productivity stocks like rockfish and sharks require F in the range of F_{50-60} or lower. Higher F values require a strong scientific rationale. The F reference points are limit reference points, so buffers should be used to ensure that fishing mortality does not exceed these levels. Where F is unknown but MSY is estimated, fishing mortality at least 25% below MSY is considered a sustainable level (for fisheries that are at or above B_{MSY}).

Up-to-date data/stock assessment:
Complete stock assessments are not required every 1–5 years, but stocks should be regularly monitored at least every 1–5 years, and stock assessments should be based on data not more than five years old. Data may be collected by industry, but analysis should be independent.

Very limited area:
Fishing (with damaging gear, when assessing Criterion D) is limited to no more than 50% of each representative habitat (where representative habitats can be delineated by substrate, bathymetry, and/or community assemblages) within both the range of the targeted stock(s) and the regulatory boundaries of the fishery under consideration (e.g., the national EEZ for the fishery under consideration).

Very low levels of exploitation (e.g., experimental fishery):
Fishery is under-exploited or is being conducted experimentally to collect data or gauge viability, such that exploitation rates are far below sustainable yields (e.g., 20% or less of sustainable take). Alternatively, when no other information is available, exploitation levels may be considered very low if a
fishery falls into the “low” category for all “susceptibility” questions under Productivity-Susceptibility Analysis (see Appendix 2 for more details on scoring susceptibility).
References

MSC. 2009. Marine Stewardship Council Fisheries Assessment Methodology and Guidance to Certification Bodies Including Default Assessment Tree and Risk-Based Framework.

Appendices

Appendix 1 – Further guidance on interpreting the health of stocks and fishing mortality

The tremendous variability among fisheries makes it impossible to define specific appropriate reference points that would be applicable to all assessed fisheries. Instead, criteria are based on the commonly accepted management goal that target biomass should be at or above the point where yield is maximized, and management should ensure a high probability that biomass is at or above a limit reference point (where recruitment or productivity of the stock would be impaired). Three common types of reference points are MSY-based, SPR-based, and ICES reference points. However, other reference points may be used in some fisheries, and should be evaluated in accordance with the management goal articulated above.

MSY-based reference points
While the concept of MSY is far from perfect, MSY-based biomass and fishing mortality reference points are commonly used in some of the most well managed fisheries around the world. When applied appropriately, these reference points are an important tool for maintaining stock productivity in the long term. However, without properly accounting for scientific and management uncertainty, maintaining a stock at B_{MSY} (the biomass corresponding to MSY) and harvesting at MSY runs a high risk of unknowingly either overshooting MSY or allowing biomass to drop below B_{MSY} without reducing harvest rates and thus inadvertently overharvesting (Roughgarden and Smith 1996; Froese et al. 2010). The risk of impacts from inadvertent overharvesting increases with increased uncertainty and with increased inherent vulnerability of the targeted stock. To account for these interactions, the guidance provided for assessing stock health and fishing mortality is based on MSY reference points but requires high scientific confidence that biomass is above target levels and that fishing mortality is below MSY.

Proxies for B_{MSY} are acceptable if shown to be conservative relative to B_{MSY} for that stock, or if they fit within the guidelines for appropriate target level*. Where B_{MSY} or proxy reference points are not known or are not applicable, the stock/population health criteria can be interpreted using relevant indicators that are appropriate as targets and safe limits for abundance of the species (e.g., escapement relative to escapement goals can be evaluated in lieu of biomass relative to limit reference points).

SPR-based reference points
In the absence of stock assessments and MSY-based reference points, the stock health can be evaluated based on CPUE, trends in abundance and size structure, and/or simple, easy to calculate reference points such as Fraction of Lifetime Egg Production (FLEP) (equivalent to Spawning Potential Ratio, SPR). Other data-poor or alternative assessment techniques that provide evidence that stocks are healthy (i.e., productivity and reproduction are not impaired) may be used in place of reference points. Guidelines may be added on a continuing basis, but they must be demonstrated to be accurate indicators of stock health. Guidance for assessing stock health and fishing mortality for data-poor stocks is based on O’Farrell and Botsford (2005) and Honey et al. (2010) but can be addressed on a case-by-case basis with a goal of ensuring that data-poor fisheries are held to the same standard of likelihood as data-rich fisheries when stocks are above a level where recruitment would be impaired and fishing mortality is at or below a sustainable level of harvest.
Examples of evidence that a stock is above the point where recruitment or productivity is impaired. i.e. an appropriate limit reference point, include:
 o the current lifetime egg production (LEP) or spawning per recruit (SPR) is above an appropriate SPR or Fraction of Lifetime Egg Production (FLEP)-related reference point;
 o spawning potential is well protected (e.g., females are not subject to mortality, and it can be shown or inferred that fertilization is not reduced);
 o quantitative analyses conducted by fishery scientists under transparent guidelines indicate sufficient stock

• Strong, quantitative scientific evidence from the fishery under consideration is required to consider a stock a “very low concern”. When limited data are available from the fishery, analogy with similar systems, qualitative expert judgments and/or plausible arguments may be used to consider the stock “low concern”.

• Use of CPUE requires the absence of hyperstability, that CPUE is proportional to abundance (or adjusted), and that there have been no major changes in technology.

• The LEP can be estimated from length frequency data from both unfished (or marine reserve) and current populations, and does not require catch-at-age data. Reference points based on FLEP should be considered limit reference points.

For “very low concern” ratings, there must be no evidence that productivity has been reduced through fisheries-induced changes in size or age structure, size or age at maturity, sex distribution, etc. SPR-based and MSY-based reference points should account for these changes as they are based on productivity of the stock rather than simple abundance. If the metric considers abundance only, or if there is evidence that productivity has been reduced through shifts in age, size or sex distributions, the stock cannot be rated higher than “low concern.” Moreover, for “very low concern,” stock assessments or updates should be no more than five years old; have been approved through an independent scientific peer review process; and include verified fishery dependent and fishery independent abundance data and accurate life history data. Biomass information must be estimated with low uncertainty. In cases where these qualifications may not apply, the analyst must adequately justify his/her reasoning.

ICES reference points
The ICES reference points Fpa, Flim, Bpa, and Blim are not equivalent to MSY-based reference points. In fact, comparisons have demonstrated that Fpa is typically above F_{MSY} and Bpa is typically below B_{MSY}, such that MSY-based reference points are generally more conservative (ICES 2010). In many cases, Bpa is well below B_{MSY}, and even below 1/2B_{MSY} (Kell et al. 2005). Therefore, guidance for evaluating stock health using Bpa and fishing mortality using Fpa is conservative, accounting for the difference between these reference points and MSY-based reference points. ICES plans to transition to an MSY-based approach by 2015 (ICES 2010). If B>Bpa or F<Fpa, the stock should score as a moderate concern, unless a good reason exists to justify a “low concern” score (i.e., either the reference points have been shown to be conservative or the biomass is well above reference points).

Proxies
For many fisheries, F_{MSY} and B_{MSY} are unknown, and proxies are often used. Most commonly, biomass proxies are based on the percent of unfished or virgin biomass (B_0). Fishing mortality proxies are often based on spawning potential ratio (SPR).
Commonly used and acceptable biomass reference points are typically 35–40% of B₀ for most stocks (Clark 1991; NZ Ministry of Fisheries 2008). This target may vary according to stock productivity; however, justifications for lower target levels are often based on assumptions about “steepness” that may be highly uncertain or poorly understood. It is now recognized that stock targets lower than approximately 30–40% of B₀ are increasingly difficult to justify (NZ Ministry of Fisheries 2008). For these targets to be considered appropriate reference points, solid scientific justification is required. In addition, stocks reduced to this target level or below (equivalent to removing more than 60–70% of the stock’s biomass) would be unlikely to achieve the ecosystem-based management goal of allowing a stock to fulfill its ecological role and should be scored accordingly under ecosystem-based management.

Alternatively, when unfished biomass cannot be estimated, proxy biomass reference points may be based on the equilibrium biomass achieved using appropriate fishing mortality reference points, as described below.

A large body of scientific literature addresses appropriate fishing mortality reference points based on spawner biomass per recruit (SPR). Ideally, these should be shown through scientific analysis to be at or above replacement %SPR (the threshold level of SPR necessary for replacement) for the species, based on its productivity and S-R relationship (viz. Mace and Sissenwine 1993). However, for many species this analysis will not be available. In these cases, guidance is based on the conclusions of numerous analyses demonstrating that, in general, F₃₅-₄₀% (the fishing mortality rate that reduces the SPR to 35–40% of unfished levels) is appropriate for species with moderate vulnerability, while a more conservative fishing mortality rate of about F₅₀-₆₀% is needed for highly vulnerable species such as rockfish and sharks (Botsford and Parma 2005; Mace and Sissenwine 1993; Clark 2002; Myers et al. 1999; Goodman et al. 2002).

Evaluating Fishing Mortality

Evaluation of fishing mortality should reflect the mortality caused by the fishery, but in the context of whether cumulative impacts on the species (including mortality from other fisheries) are sustainable. When determining whether a fishery is a substantial contributor, err on the side of caution. Unknown or missing data are grounds for classification as a substantial contributor.

Reference points

Generally, species should be managed with reference points that fit the definition of a sustainable level of fishing mortality and/or an appropriate SPR or Fraction of Lifetime Egg Production (FLEP)-related reference point. Species that are not commercially fished or managed but make up non-target catch in the fishery will generally not have reference points defined. In lieu of reference points, these stocks should be evaluated relative to a level of mortality scientifically shown not to lead to depletion of the stock. For species with high vulnerability, the reference point must be demonstrated to be appropriate for that species’ biology. As a rule of thumb, F₅₀% is not precautionary enough for high vulnerability species; F₂₀% or lower is more appropriate when using SPR-based proxies.

6 Steepness is a key parameter of the Beverton-Holt spawner-recruit model that is defined as the proportion of unfished recruitment produced by 20% of the unfished spawning biomass. Steepness is difficult to estimate, and the calculation of reference points is often very sensitive to estimates of steepness.
ICES reference points
Because analysis has shown that the ICES reference point Fpa is typically above F_{MSY}, ICES stocks using Fpa as a reference point must be rated more conservatively than stocks using F_{MSY}. If F > Fpa, rate the stock as “high concern”. If F < Fpa, rate the stock as “moderate concern,” unless there is additional evidence that F is below a sustainable level such as F_{MSY}.

Data-poor stocks
When no reference points are available (i.e., in data-poor fisheries), fishing mortality can be evaluated based on the likelihood that management actions and characteristics of the fishery constrain fishing mortality to acceptable levels. For example, fishing mortality could be considered a low concern if the fishery has a low likelihood of interacting with a non-target species due to low overlap between the species range and the fishery, or due to low gear selectivity for the species (resulting in low susceptibility; see below). Fishing mortality on target or non-target species may be considered a low concern if there is a very low level of exploitation, as in an experimental emerging fishery, or if a large portion of the stock’s key habitat is protected in no-take reserves that have been shown to effectively protect the species. We hope to incorporate the results of ongoing research to provide more specific guidance on the amount of habitat that should be protected in marine reserves. In the interim, however, in order to score fishing mortality as a very low concern in the absence of reference points or other information about fishing mortality rates, at least 50% of all representative habitats should be protected in Marine Protected Areas where the assessed stock experiences no fishery mortality.

Appendix 2 – Matrix of bycatch impacts by gear type
The matrices in this appendix are used to determine the relative impact of a fishery on bycatch species of various taxa for fisheries where species and amounts of bycatch are not available or are incomplete. The matrices represent typical relative impacts of different fishing gear on various taxa based on the best available science. If there are data that indicate a specific fishery is operating differently from the standard operating procedures, the UBM can be overruled.

Scoring abundance of unknown bycatch species:
Sea turtles, sharks, marine mammals, seabirds, and fish and invertebrate bycatch species from taxa known to be of high inherent vulnerability – including sharks, skates, rays, sturgeon, rockfish, grouper, corals, abalone and conch – should be scored as highly vulnerable, and thus a High Concern under the abundance factor (2.1). Other fish and invertebrates should generally be scored as a Moderate Concern, unless data exist that would indicate an alternative rating. For more guidance, see also “Additional guidance for scoring unknown bycatch species in Criterion 1.1/2.1 (Abundance)”, below.

Scoring fishing mortality of unknown bycatch species:
Highly vulnerable marine megafauna (sea turtles, marine mammals, seabirds and sharks)
Updated tables for highly vulnerable taxa (sea turtles, marine mammals, seabirds, and sharks) now incorporate a regional component. We generated these values based on an extensive literature review (54 reports, peer-reviewed articles) to better reflect the array of bycatch issues that occur using the same gear types in different regions of the world, reflecting the regional susceptibility of the taxa to gear. Only the turtle matrix also incorporates reproductive values because the literature incorporates
age-related information that was not available for the other taxa. We incorporated the effect of mitigation measures only to the extent that bycatch studies were of fisheries that used bycatch reduction techniques.
Gear categories for Unknown Bycatch Matrices

<table>
<thead>
<tr>
<th>FAO Gear Category</th>
<th>FAO Methods</th>
<th>FAO Abbreviation</th>
<th>MBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>DREDGES</td>
<td>Dredges (nei)</td>
<td>LN</td>
<td>Use this for all dredges</td>
</tr>
<tr>
<td>GILLNETS AND ENTANGLING NETS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set gillnets</td>
<td></td>
<td>GNS</td>
<td></td>
</tr>
<tr>
<td>Drift gillnets (driftnets)</td>
<td></td>
<td>GND</td>
<td></td>
</tr>
<tr>
<td>Encircling gillnets</td>
<td></td>
<td>GNC</td>
<td>Use GND</td>
</tr>
<tr>
<td>Fixed gillnets (on stakes)</td>
<td></td>
<td>GNF</td>
<td>Use GNS</td>
</tr>
<tr>
<td>Trammel nets</td>
<td></td>
<td>GTR</td>
<td>Use GNS</td>
</tr>
<tr>
<td>Combined gillnets - trammel nets</td>
<td></td>
<td>GTN</td>
<td>Use GNS</td>
</tr>
<tr>
<td>Gillnets and entangling nets (nei)</td>
<td></td>
<td>GEN</td>
<td>If on bottom GNS, if not fixed, GND</td>
</tr>
<tr>
<td>HOOKS AND LINES</td>
<td>Handlines and hand-operated pole-and-lines</td>
<td>LHP</td>
<td></td>
</tr>
<tr>
<td>Mechanized lines and pole-and-lines</td>
<td></td>
<td>LHM</td>
<td></td>
</tr>
<tr>
<td>Set longlines</td>
<td></td>
<td>LLS</td>
<td>Bottom longlines, Buoy gear</td>
</tr>
<tr>
<td>Drifting longlines</td>
<td></td>
<td>LLD</td>
<td>Pelagic longline</td>
</tr>
<tr>
<td>Trolling lines</td>
<td></td>
<td>LTL</td>
<td></td>
</tr>
<tr>
<td>MISCELLANEOUS GEARS</td>
<td>Harpoons</td>
<td>HAR</td>
<td></td>
</tr>
<tr>
<td>Diving</td>
<td></td>
<td>MDV</td>
<td></td>
</tr>
<tr>
<td>SURROUNDING NETS</td>
<td>Purse seines</td>
<td>PS</td>
<td>Dolphin set (D), Floating Object/whaleshark (F), Unassociated (U)</td>
</tr>
<tr>
<td>Surrounding nets (nei)</td>
<td></td>
<td>SUX</td>
<td>Lampara, non-tuna PS</td>
</tr>
<tr>
<td>TRAPS</td>
<td>Pots</td>
<td>FPO</td>
<td></td>
</tr>
<tr>
<td>TRAWLS</td>
<td>Bottom trawls (nei)</td>
<td>TB</td>
<td>Small mesh bottom trawl, Magdalena - Artisanal bottom trawl</td>
</tr>
<tr>
<td>Midwater trawls (nei)</td>
<td></td>
<td>TM</td>
<td></td>
</tr>
</tbody>
</table>
Sea Turtle Bycatch Susceptibility

<table>
<thead>
<tr>
<th>Region</th>
<th>Longline</th>
<th>Gillnet</th>
<th>Trawl</th>
<th>Dredge</th>
<th>Purse Seine</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLS</td>
<td>LLD</td>
<td>GNS</td>
<td>GND</td>
<td>TB</td>
<td>TM</td>
</tr>
<tr>
<td>Caribbean/Gulf of Mexico</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>East Indian Ocean/Southeast Asia</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>E. Pacific/Eastern Tropical Pacific</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>North Pacific</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Northeast Atlantic</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Northwest Atlantic</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oceania (West Central Pacific)</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>W. Africa/Southeast Atlantic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Southwest Atlantic</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Southwest Pacific (Australia/New Zealand)</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>West Indian Ocean and Red Sea</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

For known, unassessed spp., ≥3.5 = low concern
Marine Mammal Bycatch Susceptibility

<table>
<thead>
<tr>
<th>Region</th>
<th>Longline</th>
<th>Gillnet</th>
<th>Trawl</th>
<th>Dredge</th>
<th>Purse Seine</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLS</td>
<td>LLD</td>
<td>GNS</td>
<td>GND</td>
<td>TB</td>
<td>TM</td>
</tr>
<tr>
<td>Caribbean/Gulf of Mexico</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Southeast Asia (East Indian)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Eastern Tropical Pacific/Eastern Pacific</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Northeast Pacific</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Northeast Atlantic</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Northwest Atlantic</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Northwest Pacific</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Oceania (Western Central Pacific)</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Southern Ocean</td>
<td>4</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>West Africa/Southeast Atlantic</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Southwest Atlantic</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Southwest Pacific (Australia/New Zealand)</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>West Indian Ocean and Red Sea</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

*For known, unassessed spp., ≥3.5 = low concern
Seabird Bycatch Susceptibility

<table>
<thead>
<tr>
<th>Region</th>
<th>Longline</th>
<th>Gillnet</th>
<th>Trawl</th>
<th>Dredge</th>
<th>Purse Seine</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLS</td>
<td>PLL</td>
<td>GNS</td>
<td>DGN</td>
<td>TB</td>
<td>TM</td>
</tr>
<tr>
<td>Caribbean/Gulf of Mexico</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>East Indian Ocean/Southeast Asia</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Eastern Tropical Pacific/Southeast Pacific</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mediterranean</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3.5</td>
</tr>
<tr>
<td>Northeast Atlantic</td>
<td>1</td>
<td>2.5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Northeast Pacific</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Northwest Atlantic</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>Northwest Pacific</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oceania (Western Central Pacific)</td>
<td>4</td>
<td>2.5</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Southern Ocean</td>
<td>1</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>West Africa/Southeast Atlantic</td>
<td>1</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Southwest Atlantic</td>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Southwest Pacific (Australia/New Zealand)</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>West Indian Ocean and Red Sea</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

For known, unassessed spp., ≥3.5 = low concern
Unknown Bycatch Matrices - sharks

Shark Bycatch Susceptibility

<table>
<thead>
<tr>
<th>Region</th>
<th>Longline</th>
<th>Gillnet</th>
<th>Trawl</th>
<th>Dredge</th>
<th>Purse Seine</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LLS</td>
<td>PLL</td>
<td>GNS</td>
<td>DGN</td>
<td>TB</td>
<td>TM</td>
</tr>
<tr>
<td>Caribbean/Gulf of Mexico</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>--</td>
</tr>
<tr>
<td>East Indian Ocean/Southeast Asia</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Eastern Tropical Pacific/Eastern Pacific</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Mediterranean/Black Sea</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Northeast Atlantic</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Northeast Pacific</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Northwest Atlantic</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Northwest Pacific</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Oceania (Western Central Pacific)</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Southern Ocean</td>
<td>4</td>
<td>4</td>
<td>--</td>
<td>--</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>West Africa/Southeast Atlantic</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Southwest Atlantic</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Southwest Pacific (Australia/New Zealand)</td>
<td>1</td>
<td>1</td>
<td>2.5</td>
<td>2.5</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>West Indian Ocean and Red Sea</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

For known, unassessed spp., ≥3.5 = low concern
Benthic invertebrates, finfish, forage fish, and corals

The values in the matrix of invertebrates, finfish, forage fish, and corals were developed initially by averaging the findings of two studies that ranked the relative ecological impacts of fishing gear (Fuller et al. 2008; Chuenpagdee et al. 2003). Some values in the matrix have been updated based on a survey of scientific experts on bycatch from around the world to increase the global relevance of the matrix.

The findings of the studies used to construct this matrix were pulled from literature searches, fisheries data and expert opinion. In general, these studies ranked the severity of fishing gear impacts as shown in this table (in order of severity):

<table>
<thead>
<tr>
<th>Chuenpagdee et al 2003</th>
<th>Fuller et al 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bottom trawl</td>
<td>Bottom trawl</td>
</tr>
<tr>
<td>Bottom gillnet</td>
<td>Bottom gillnet</td>
</tr>
<tr>
<td>Dredge</td>
<td>Dredge</td>
</tr>
<tr>
<td>Midwater gillnet</td>
<td>Bottom longline</td>
</tr>
<tr>
<td>Pot and traps</td>
<td>Midwater trawl</td>
</tr>
<tr>
<td>Pelagic longline</td>
<td>Pot and trap</td>
</tr>
<tr>
<td>Bottom longline</td>
<td>Pelagic longline</td>
</tr>
<tr>
<td>Midwater trawl</td>
<td>Midwater gillnet</td>
</tr>
<tr>
<td>Purse seine</td>
<td>Purse seine</td>
</tr>
<tr>
<td>Hook and line</td>
<td>Hook and line</td>
</tr>
<tr>
<td>Dive</td>
<td>Dive</td>
</tr>
<tr>
<td>Harpoon</td>
<td>Harpoon</td>
</tr>
</tbody>
</table>

Because these studies were based on fisheries operating in Canadian and United States waters, we also conducted a review of literature and expert opinion on bycatch severity by gear type from different regions of the world. Some of the initial values from Fuller et al. (2008) and Chuenpagdee et al. (2003) were adjusted accordingly. These changes are intended to better reflect the array of bycatch issues that occur using the same gear types in different regions of the world.

Bycatch severity for biogenic habitats (coral and sponges) by gear type was determined by averaging the values given in Fuller et al. (2008) and Chuenpagdee et al. (2003). Chuenpagdee et al. (2003), named this category “biological habitat” and Fuller et al. (2008) called it “coral and sponges.” We did not change these values because it is likely that gear types that contact the bottom have the same potential for severe impacts throughout the world’s oceans. Impacts from fishing on the benthos occur on virtually all continental shelves worldwide (Watling 2005).

We increased the number of trawl types from only bottom and midwater (used in both Fuller et al. (2008) and Chuenpagdee et al. (2003)) to also include bottom trawl categories for tropical/subtropical fish, tropical/subtropical shrimp, coldwater fish, and coldwater shrimp. Shrimp trawls are not designed to drag along the bottom and herd fish, so they receive a lower impact score in the matrix for finfish bycatch.

Other changes to the findings of Fuller et al. (2008) and Chuenpagdee et al. (2003) include separating the different purse seine techniques into FAD/log sets, dolphin/whale sets and unassociated school sets based on the variable bycatch rates found in a study by Hall (1998). Hall (1998) found that log (FAD) sets have the overall greatest bycatch for some species, followed by school sets and dolphin sets.
Bottom seines or demersal seines (including Danish seines, Scottish fly-dragging seines and pair seines) were not included in the Fuller et al. (2008) and Chuenpagdee et al. (2003) studies because these gear types are not commonly used in the U.S. or Canada. Like purse seines, these gear types encircle a school of fish, but they are operated in contact with the seafloor. A study by Palsson (2003) compared haddock discards among three demersal gear types in Icelandic waters and found fish bycatch to be lowest in Danish seines when compared with demersal trawls and longline gear. Danish seines targeting benthic fish species can incidentally catch non-target species such as flatfish, cod, and haddock (Icelandic Ministry of Fisheries 2010). Alverson et al. (1996) found that Danish seines generally fell into a low-moderate bycatch group of gear, with lower bycatch ratios than the majority of gear types, including bottom trawls, longlines and pots, but with higher bycatch than pelagic trawls and purse seines. Based on these findings, the bycatch score of Danish seines was estimated from the score for purse seines with an increase in the effects on shellfish to account for Danish seines being operated on the seafloor, an increase in the effect on finfish to account for greater bycatch of benthic fish such as flatfish, cod and haddock, and a decrease in the effect on forage fish, which are typically pelagic.
Unknown Bycatch Matrices – benthic invertebrates, finfish, forage fish, and corals and other biogenic habitats

Highest impacts receive a score of 1 and lowest impacts receive a score of 5. Key: B = Bottom, P = Pelagic, M = Mid-water, BTF = Bottom tropical fish, BTS = Bottom tropical shrimp, BCF = Bottom coldwater fish, BCS = Bottom coldwater shrimp, PF = Purse FAD/log (tuna), PD = Purse dolphin/whale (tuna), PU = Purse unassociated (tuna), Pot = Pot and trap, HD = Harpoon/diver, TP = Troll/pole and line

<table>
<thead>
<tr>
<th></th>
<th>Longline</th>
<th>Gillnet</th>
<th>Trawl</th>
<th>Dredge</th>
<th>Seine</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B P</td>
<td>B M</td>
<td>B BTF</td>
<td>BTS</td>
<td>BCF</td>
<td>BCS</td>
</tr>
<tr>
<td>Benthic Inverts</td>
<td>4.5 5</td>
<td>3 5</td>
<td>2 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Finfish</td>
<td>2 2</td>
<td>2 1</td>
<td>2 1</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Forage Fish</td>
<td>5 4</td>
<td>2 2</td>
<td>3 2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Corals and other</td>
<td>3 5</td>
<td>2 5</td>
<td>1 1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>biogenic habitats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Additional guidance for scoring unknown bycatch species in Criterion 1.1/2.1 (Abundance)

Sea turtles – all endangered/threatened: See Wallace et al. (2010, 2013) for global patterns of marine turtle bycatch. In addition, a global program, Mapping the World’s Sea Turtles, created by the SWOT (State of the World’s Sea Turtles) database is a comprehensive global database of sea turtle nesting sites around the world. The SWOT map is highly detailed and can be customized, allowing location filters and highlights of both species and colony size with variously colored and shaped icons. This map together with the paper by Wallace et al. (2010) can help to determine if the fishery being assessed has potential interactions with sea turtles.

Sharks, marine mammals and seabirds: Identify whether the fishery overlaps with any endangered/threatened or overfished species and err on the side of caution if species-specific and geographic information is inconclusive. For example, if shark populations are data deficient, err on the side of caution and rate as “overfished” or “depleted.”

Sharks: Select “overfished” or “depleted” when data deficient, or select “endangered/threatened” when data exist to support this (see Camhi et al. 2009). Globally, three-quarters (16 of 21) of oceanic pelagic sharks and rays have an elevated risk of extinction due to overfishing (Dulvy et al. 2008). See Camhi et al. (2009) for geographic areas, IUCN status and conservation concerns by shark species. Table 1 illustrates additional resolutions, recommendations and conservation and management measures by RFMO for sharks. Additional region and species-specific shark conservation information associated follows Table 1 in list format (Camhi 2009; Bradford 2010).

Marine mammals: The global distribution marine mammals and their important conservation areas are given by Pompa et al. (2011), who also used geographic ranges to identify 20 key global conservation sites for all marine mammal species (123) and created range maps for them (Figure 1; Table 2; Pompa et al. 2011 and supplt.).

Seabirds: Figures 2 and 3 illustrate the distribution of threatened seabirds throughout the world (Birdlife International 2011). Also see Birdlife International (2010) to locate Marine Important Bird Areas (MIBA). Albatross are the most highly threatened family, with all 22 species either globally threatened or near threatened. The penguins and shearwaters/gadfly petrels also contain a high proportion of threatened species (Birdlife International 2010).
Table 1. Active resolutions, recommendations, and conservation and management measures by RFMO for sharks. Table from Camhi et al. (2009). a ICCAT = International Commission for the Conservation of Atlantic Tunas; NAFO = North Atlantic Fisheries Organization; GFCM = General Fisheries Commission for the Mediterranean; SEAFO = South East Atlantic Fisheries Organization; IATTC = Inter-American Tropical Tuna Commission; WCPOFC = Western and Central Pacific Fisheries Commission; IOTC = Indian Ocean Tuna Commission; CCAMLR = Commission for the Conservation of Antarctic Marine Living Resources. b The weight of recommendations and resolutions varies by RFMO. For example, all ICCAT recommendations are binding, whereas resolutions are not.

<table>
<thead>
<tr>
<th>Ocean/RFMO/Year</th>
<th>Res/Rec No.</th>
<th>Title</th>
<th>Main actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atlantic, ICCAT</td>
<td>1995</td>
<td>Res. 95-2 Resolution by ICCAT on cooperation with the FAO to study the status of shark stocks and by-catches</td>
<td>• Urges members to collect species-specific data on biology, bycatch and trade in shark species and provide these data to FAO</td>
</tr>
<tr>
<td></td>
<td>2003</td>
<td>Res. 03-10 Resolution by ICCAT on the shark fishery</td>
<td>• Requests all members to submit data on shark catch, effort by gear, landings and trade in shark products • Urges members to fully implement a NPOA</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Rec. 04-10 Recommendation by ICCAT concerning the conservation of sharks caught in association with fisheries managed by ICCAT</td>
<td>• Requires members to annually report shark catch and effort data • Requires full utilization • Bans finning • Encourages live release • Commits to reassess shortfin mako and blue sharks by 2007 • Promotes research on gear selectivity and identification of nursery areas</td>
</tr>
<tr>
<td></td>
<td>2005</td>
<td>Rec. 05-05 Recommendation by ICCAT to amend Recommendation 04-10 concerning the conservation of sharks caught in association with fisheries managed by ICCAT</td>
<td>• Requires annual reporting of progress made toward implementation of Rec. 04-10 by members • Urges member action to reduce North Atlantic shortfin mako mortality</td>
</tr>
<tr>
<td></td>
<td>2006</td>
<td>Rec. 06-10 Supplementary recommendation by ICCAT concerning the conservation of sharks caught in association with fisheries managed by ICCAT</td>
<td>• Acknowledges little progress in quantity and quality of shark catch statistics • Reiterates call for current and historical shark data in preparation for blue and shortfin mako assessments in 2008</td>
</tr>
<tr>
<td></td>
<td>2007</td>
<td>Rec. 07-06 Supplemental recommendation by ICCAT concerning sharks</td>
<td>• Reiterates mandatory data reporting for sharks • Urges measures to reduce mortality of targeted porbeagle and shortfin mako • Encourages research into nursery areas and possible time and area closures • Plans to conduct porbeagle assessment no later than 2009</td>
</tr>
<tr>
<td></td>
<td>2008</td>
<td>Rec. 08-07 Recommendation by ICCAT on the conservation of bigeye thresher sharks (Alopias superciliosus) caught in</td>
<td>• Urges live release of bigeye thresher sharks to the extent practicable • Requires bigeye shark catches and live releases be reported</td>
</tr>
<tr>
<td>Ocean/RFMO*Year</td>
<td>Res/Rec No.*</td>
<td>Title</td>
<td>Main actions</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>-------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| Atlantic, NAFO | Mgt. Measure Article 17 | Conservation and management of sharks | • Requires reporting of all current and historical shark catches
• Promotes full utilization
• Bans finning
• Encourages live release
• Promotes research on gear selectivity and identification of nursery areas |
| Atlantic, SEAFO | Conservation measure 04/06 | Conservation measure 04/06 on the conservation of sharks caught in association with fisheries managed by SEAFO | • Same provisions as ICCAT Rec. 04-10, except does not include stock assessments |
| Med., GFCM | GFCM/2005/3 | Recommendation by ICCAT concerning the conservation of sharks caught in association with fisheries managed by ICCAT | • Same provisions as ICCAT Rec. 04-10 |
| Indian, IOTC | GFCM/2006/8(B) | Recommendation by ICCAT to amend Recommendation [04-10] concerning the conservation of sharks caught in association with fisheries managed by ICCAT | • Same provisions as ICCAT Rec. 05-05 |
| 2005 | Res. 05/05 | Concerning the conservation of sharks caught in association with fisheries managed by IOTC | • Requires members to report shark catches annually, including historical data
• Plans to provide preliminary advice on stock status by 2006
• Requires full utilization and live release
• Bans finning
• Promotes research on gear selectivity and to ID nursery areas |
<p>| 2008 | Res. 08/01 | Mandatory statistical requirements for IOTC members and cooperating non-contracting parties (CPCs) | • Requires members to submit timely catch and effort data for all species, including commonly caught shark species and less common sharks, where possible |
| 2008 | Res. 08/04 | Concerning the recording of catch by longline fishing vessels in the IOTC | • Mandates logbook reporting of catch by species per set, including for blue, porbeagle, mako and other sharks |</p>
<table>
<thead>
<tr>
<th>Ocean/RFMO\Year</th>
<th>Res/Rec No.</th>
<th>Title</th>
<th>Main actions</th>
</tr>
</thead>
</table>
| Pacific, IATTC | 2005 | Res. C-05-03 Resolution on the conservation of sharks caught in association with fisheries in the Eastern Pacific Ocean | • Promotes NPOA development among members
• Work with WCPFC to conduct shark population assessments
• Promotes full utilization
• Bans finning
• Encourages live release and gear-selectivity research
• Requires species-specific reporting for sharks, including historical data |
| | 2006 | Res. C-04-05 (REV 2) Consolidated resolution on bycatch | • Requires prompt release of sharks, rays and other non-target species
• Promotes research into methods to avoid bycatch (time-area analyses), survival rates of released bycatch and techniques to facilitate live release
• Urges members to “provide the required bycatch information as soon as possible” |
| Pacific, WCPFC | 2008 | Cons. & Mgt. Measure 2008-06 (replaces 2006-05) Conservation and management measure for sharks in the Western and Central Pacific Ocean | • Urges members to implement the IPOA and report back on progress
• Requires annual reporting of catches and effort
• Encourages live release and full utilization
• Bans finning for vessels of all sizes
• Plans to provide preliminary advice on stock status of key sharks by 2010 |
| Southern, CCAMLR| 2006 | 32-18 Conservation of sharks | • Prohibits directed fishing of sharks
• Live release of bycatch sharks |
Additional shark information and citations (Bradford 2010)

- In the Gulf of Mexico, Baum and Myers (2004) found that between the 1950s and the late-1990s, oceanic whitetip and silky sharks (formerly the most commonly caught shark species in the Gulf of Mexico) declined by over 99 and 90%, respectively.
- In the Northwest Atlantic, Baum et al. (2003) estimated that scalloped hammerhead, white, and thresher sharks had declined by over 75% between the mid-1980s and late-1990s. The study also found that all recorded shark species in the Northwest Atlantic, with the exception of mako sharks, declined by over 50% during the same time period.
- Myers et al. (2007) reported declines of 87% for sandbar sharks, 93% for blacktip sharks, 97% for tiger sharks, 98% for scalloped hammerheads, and 99% or more for bull, dusky, and smooth hammerhead sharks along the Eastern seaboard since surveys began along the coast of North Carolina in 1972.
- The International Union for the Conservation of Nature (IUCN) has declared that “32% of all pelagic sharks and rays are Threatened.” The IUCN has declared another 6% to be Endangered, and 26% to be Vulnerable.
- In the Mediterranean Sea, Ferretti et al. (2008) found that hammerhead, blue, mackerel, and thresher sharks have declined between 96 and 99.99% relative to their former abundance levels.
- Ward and Myers (2005) report a 21% decline in abundance of large sharks and tunas in the tropical Pacific since the onset of commercial fishing in the 1950s.
- Meyers and Worm (2005) indicate a global depletion of large predatory fish communities of at least 90% over the past 50–100 years. The authors suggest that declines are “even higher for sensitive species such as sharks.”
- Dulvy et al. (2008) state that “globally, three-quarters (16 of 21) of oceanic pelagic sharks and rays have an elevated risk of extinction due to overfishing.”
- Graham et al. (2001) found an average decrease of 20% in the catch rate of sharks and rays off New South Wales, Australia, between 1976 and 1997.
Table 2. Marine mammal species in important conservation sites. “Irreplaceable areas” contain species found nowhere else. Figures from Pompa et al. (2011; suppl. material). ¹Monachus schauinslandi, ²Arctocephalus galapagoensis, ³A. philippiii, ⁴Inia geoffrensis, Trichechus inunguis (both freshwater) and Sotalia fluviatilis, ⁵Monachus monachus, ⁶Trichechus inunguis (both freshwater), ⁷Platanista gangetica (freshwater), ⁸Platanista minor (freshwater), ⁹Platanista minor (freshwater), ¹⁰Pusa sibirica, ¹¹Cephalorhynchus commersonii and A. gazella. *VU = Vulnerable, EN = Endangered, CR = Critically Endangered, LR = Lesser Risk, EX = Extinct, CE = Critically Endangered; V = Vulnerable, RS = Relatively Stable or Intact. Data from Olson and Dinerstein (2002).

<table>
<thead>
<tr>
<th>Key conservation sites</th>
<th>Number of species</th>
<th>Endemic/small-range</th>
<th>Risk category for each ecoregion*</th>
<th>Number and name of the ecoregion*</th>
<th>Estimated conservation status of the ecoregion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highest richness</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>South African</td>
<td>16</td>
<td>4</td>
<td>VU, EN</td>
<td>209: Benguela Current</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>211: Agulhas Current</td>
<td>RS</td>
</tr>
<tr>
<td>Argentinean</td>
<td>15</td>
<td>4</td>
<td>VU, EN</td>
<td>205: Patagonian Southwest Atlantic</td>
<td>V</td>
</tr>
<tr>
<td>Australian</td>
<td>14</td>
<td>4</td>
<td>VU, EN</td>
<td>206: Southern Australian</td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>222: Great Barrier</td>
<td></td>
</tr>
<tr>
<td>Baja Californian</td>
<td>25</td>
<td>7</td>
<td>VU, EN, CR</td>
<td>214: Gulf of California</td>
<td>CE</td>
</tr>
<tr>
<td>Peruvian</td>
<td>19</td>
<td>5</td>
<td>VU, EN</td>
<td>210: Humboldt Current</td>
<td>V</td>
</tr>
<tr>
<td>Japanese</td>
<td>25</td>
<td>7</td>
<td>VU, EN, LR</td>
<td>217: Nansei Shoto</td>
<td>V</td>
</tr>
<tr>
<td>New Zealand</td>
<td>13</td>
<td>2</td>
<td>VU, EN, LR</td>
<td>207: New Zealand</td>
<td>V</td>
</tr>
<tr>
<td>Northwestern African</td>
<td>25</td>
<td>7</td>
<td>VU, EN, LR</td>
<td>216: Canary Current</td>
<td>V</td>
</tr>
<tr>
<td>American</td>
<td>25</td>
<td>7</td>
<td>VU, EN, LR</td>
<td>202: Chesapeake Bay</td>
<td>V</td>
</tr>
<tr>
<td>Irreplaceable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hawaiian Islands</td>
<td>1</td>
<td>1</td>
<td>EN</td>
<td>227: Hawaiian Marine</td>
<td>V</td>
</tr>
<tr>
<td>Galapagos Islands</td>
<td>1</td>
<td>1</td>
<td>VU</td>
<td>215: Galapagos Marine</td>
<td>V</td>
</tr>
<tr>
<td>San Félix and Juan Fernández Islands</td>
<td>1</td>
<td>1</td>
<td>EN</td>
<td>210: Humboldt Current</td>
<td>V</td>
</tr>
<tr>
<td>Amazon River</td>
<td>2</td>
<td>1</td>
<td>VU</td>
<td>147: Amazon River/Flooded Forests</td>
<td>RS</td>
</tr>
<tr>
<td>Mediterranean Sea</td>
<td>1</td>
<td>1</td>
<td>CR</td>
<td>199: Mediterranean Sea</td>
<td>CE</td>
</tr>
<tr>
<td>Indus River</td>
<td>1</td>
<td>1</td>
<td>Not Listed</td>
<td>Not Listed</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Ganges River</td>
<td>1</td>
<td>1</td>
<td>EN</td>
<td>Not Listed</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Yang-tse River</td>
<td>1</td>
<td>1</td>
<td>EX</td>
<td>149: Yang-Tse River And Lakes</td>
<td>CE</td>
</tr>
<tr>
<td>Baikal Lake</td>
<td>1</td>
<td>1</td>
<td>LR</td>
<td>184: Lake Baikal</td>
<td>V</td>
</tr>
<tr>
<td>Caspian Sea</td>
<td>1</td>
<td>1</td>
<td>VU</td>
<td>Not Listed</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Kerguelen Islands</td>
<td>1</td>
<td>1</td>
<td>Not Listed</td>
<td>Not Listed</td>
<td>Not Listed</td>
</tr>
</tbody>
</table>
Figure 1. Geographic distribution of marine mammal species richness (left column) for A. Pinnipeds; B. Mysticetes; C. Odontocetes. Figure from Pompa et al. (2011).
Figure 2. At-sea distribution of threatened seabirds around the globe. Each polygon represents the range map for one threatened species. Areas of darkest blue show the areas of the ocean where the ranges of the greatest number of threatened species overlap. Figure from Birdlife International (2011).

Figure 3. Worldwide distribution of albatross and petrels. Figure from Birdlife International (2011).
Appendix 3 – Appropriate management strategies

Appropriate management procedures may vary greatly between different fisheries, regulatory frameworks and species. To some extent, assessment of harvest control rules and other management strategies must therefore be addressed on a case-by-case basis. However, general guidelines for appropriate management are still relevant and useful. For fisheries managed using catch limits or TACs, these guidelines have been derived largely from the guidance provided for implementation of the Magnuson-Stevens Fishery Conservation and Management Act used for fishery management in the U.S. (Restrepo and Powers 1998; Restrepo et al. 1998). While other countries have different regulatory frameworks, similar strategies to those suggested in Restrepo et al. (1998) are used throughout the world where stock assessments are available and catch limits are employed (e.g., Australian Department of Agriculture, Fisheries and Forestry 2007; NZ Ministry of Fisheries 2008; DFO 2009). Commonly accepted strategies include setting fishing mortality rates safely below FMSY (or equivalent) to account for uncertainty; reducing F when stocks fall below biomass target reference points (generally around BMSY or 40% of unfished biomass); and reducing fishing mortality when stock falls below a critical level where recruitment is impaired. Management reference points are assumed to be valid unless scientific information exists to suggest otherwise, e.g., a scientific assessment or controversy that strongly suggests current reference points are not appropriate for the species under assessment.

In general, the minimal attributes of an appropriate management strategy include:
1. A process for monitoring and conducting “assessments” (not necessarily formal stock assessments). Monitoring should occur regularly, though the frequency of assessments needed may vary depending on the variability of the stock.
2. Rules that control the intensity of fishing activity or otherwise ensure the protection of stock productivity.
3. A process to modify rules according to assessment results, as needed.

Some effective management strategies

For data-rich or data-moderate stocks that have quota-based management, a “highly effective” management strategy is one that:
- Incorporates an up-to-date, scientific stock assessment that allows managers to determine if stocks are healthy and to set appropriate quotas;
- Uses appropriate limit and target reference points for stock and fishing mortality;
- Chooses risk-averse policies rather than risky, yield-maximizing policies;
- Includes buffers in the TAC to account for uncertainty in stock assessments
 - Set Allowable Biological Catch (ABC) and Annual Catch Limit (ACL) at less than the Over-Fishing Level (OFL = long term mean of MSY) to account for scientific uncertainty (survey data on stock size, etc. can reduce scientific uncertainty);
 - Set Total Allowable Catch (TAC) at less than ABC to account for management uncertainty (monitoring catch, etc. can reduce management uncertainty);
 - As a rule of thumb, TAC should have less than 30% \(p^* \) (likelihood of exceeding OFL; or TAC should be set such that \(F \) is 25% below the threshold fishing pressure, e.g. FMSY (Restrepo et al. 1998)
 - Stocks with low biomass, high vulnerability, and high uncertainty warrant greater protection against overfishing (e.g., more conservative harvest control rules/ greater buffers in setting TAC and/or closer monitoring of stocks).
• Takes into account other sources of mortality (e.g., recreational fishery, bycatch of juveniles, etc.) and environmental factors that affect stock, such as oceanographic regime;
• Incorporates a strategy for maintaining or rebuilding stock productivity:
 o A no-fishing point when biomass is below the limit reference point;
 o A decrease in F when biomass is below the target reference point or is declining (whether declines are due to fishery or environmental factors).
• Employs an effective strategy to prevent overcapitalization;
• Has been demonstrated effective (e.g., stock productivity has been maintained over multiple generations), or if stock productivity has not been maintained or is declining, have adjusted management accordingly.

Effective management in data-poor fisheries

Whether managed stocks are data-rich or data-poor, management must include a strategy to ensure that stock productivity is maintained in order to be considered effective. This strategy should include a process for monitoring and conducting “assessments” of some kind (not necessarily formal stock assessments), rules that control the intensity of fishing activity or otherwise ensure the protection of a portion of the spawning stock, and a system of adaptive management, such that rules are modified according to assessment results, as needed (Smith et al. 2009; Phipps et al. 2010).

There are some relatively reliable methods for setting catch limits in data-poor fisheries, including: An Index Method (AIM), which involves fitting a relationship between population abundance indices and catch; Depletion-Corrected Average Catch (DCAC), which allows managers to estimate a sustainable yield based on average catch over a set time period, adjusting for initial declines in abundance due to harvesting; and extrapolation methods, or relying on inferences from related or “sister” stocks, with the use of precautionary buffers in case the data-poor stocks are more vulnerable than the related data-rich stocks (Honey et al. 2010). Other techniques recommended for data-poor stocks include the use of productivity-susceptibility analysis (PSA) to highlight stocks that are particularly vulnerable to over-exploitation (Patrick et al. 2009; Honey et al. 2010) and setting catch limits based on historical catch from a period of no declines, with targets set at 75% of average catch if biomass is believed to be healthy, 50% of average catch if biomass is expected to be below target levels but above the point where recruitment would be impaired, and 25% of average catch if the stock is depleted (Restrepo and Powers 1998).

Other than constraining fishing mortality (e.g., through TACs), fisheries may be credited for employing alternative strategies that are widely believed to be help maintain stock productivity. Some examples of effective alternative strategies are spatial management, including protecting a large proportion of coastline in reserves and/or protecting known spawning aggregations with seasonal or spatial closures (e.g., Johannes 1998), or protecting females, which preserves the spawning per recruit of the population as long as fertilization does not decrease (e.g., Dungeness crab; Chaffee et al. 2010). Finally, stocks may be subject to low mortality in a data-poor fishery as a result of low susceptibility, e.g., if the species is small enough to fit between the mesh of the nets or is not attracted to the type of bait used (low susceptibility is generally more applicable as protection for non-target stocks).

Management of data-poor stocks – alternatives to MSY-based management

For data-poor stocks, management should:
• Include a process for monitoring and assessment, such as recording trends in CPUE and size structure, or estimating FLEP, or comparison of abundance index to historical high (see glossary), unfished, or marine reserve levels:
 o Trends in CPUE are appropriate only if technology has not changed, there is no hyperstability, and abundance is shown to be proportional to CPUE;
 o Trends in size structure must also be monitored to avoid depletion of large individuals.
• Include a strategy for protecting spawning stock, such as:
 o Estimate sustainable yield based on Depletion Corrected Average Catch (DCAC), An Index Method (AIM), or another accepted strategy;
 o Protect a large portion of spawning stock in marine reserves (at least 50%, including important spawning areas if applicable) or close hotspots to fishing (for bycatch species);
 o Enforce size, sex, and/or season limitations that are likely to be effective in protecting spawning stock productivity (e.g., Dungeness crab 3-S management);
 o Extrapolate based on data-rich related or “sister” stocks, with precautionary buffers in place to account for potential differences in the stocks’ life histories;
 o Maintain exploitation rates at very low levels (e.g., experimental fishery) until more data can be collected, or
 o Base TAC on average historical catch during a period of time with no declines in abundance (TAC should be set at no more than 75% of average catch if stock is believed to be healthy, 50% if believed to be below target levels, and 25% if believed to be overfished. Note: as there is generally no data to assess whether a stock is healthy, TAC should not be more than 50% of historical catch unless there is a strong scientific reason to believe that stocks are above B_{MSY}).
• Allow for adaptive management so that fishing strategy is adjusted if assessment/monitoring indicates that stock is declining or below target levels;
• Have been demonstrated effective (e.g., stock productivity has been maintained over multiple generations) or, if stock productivity has not been maintained or is declining, management has been adjusted accordingly.

Procedures for monitoring/assessing stocks and procedures for protecting spawning stock must be in place, and be demonstrated effective, to qualify management strategy as “highly effective”. If measures are expected to be effective, e.g., through analogy with similar systems, but have not been demonstrated effective in this fishery, management is “moderately effective”. If measures are not expected to be effective, management strategy is “ineffective”.

Appropriate management also depends on the conservation concern associated with the stock. In addition to the precautionary elements listed above, stocks that are endangered or threatened also require a recovery plan and/or best management practices designed and demonstrated to reduce mortality and allow the stock to recover. Overfished and depleted stocks require a rebuilding plan.

Data–poor fishery evaluation methods

Sequential trend analysis (index indicators)

Sequential analysis comprises a broad suite of techniques used to analyze time series data in order to detect trends in a variable (or in various indices) and infer changes in the stock or population. Sequential analyses can encompass a wide range of data types and requirements (Honey et al. 2010). Examples
include: DCAC, time series of catch statistics, survey/weight/length-based reference points, trophic indices, and spawning potential ratio (SPR) analogues (Honey et al. 2010).

Depletion-corrected average catch (DCAC) uses only catch time-series data supplemented with educated guesses for a few supplementary parameters. Therefore, it is likely of practical use for many data-poor fisheries on long-lived species (e.g., natural mortality, M < 0.2) (Honey et al. 2010). The ability of this method to identify sustainable yields from simple data input makes DCAC useful as a first-step estimate for an allowable catch level along with other data-poor methods. See: http://nft.nefsc.noaa.gov/ for the NOAA toolbox to perform DCAC analysis (Honey et al. 2010).

Vulnerability analysis

Productivity and susceptibility analysis of vulnerability – The Productivity-Susceptibility Analysis of vulnerability (PSA) method is used to assess a stock’s vulnerability to overfishing, based on relative scores derived from life-history characteristics. Productivity, which represents the potential for stock growth, is rated semi-quantitatively from low to high on the basis of the stock’s intrinsic rate of increase \(r \), von Bertalanffy growth coefficient \(k \), natural mortality rate \(M \), mean age at maturity, and other metrics (Patrick et al. 2009; Patrick et al. 2010; Field et al. 2010; Cope et al. 2011; Honey et al. 2010).

To assist regional fishery management councils in determining vulnerability, NMFS elected to use a modified version of a productivity and susceptibility analysis (PSA) because it can be based on qualitative data, has a history of use in other fisheries, and is recommended by several organizations as a reasonable approach for evaluating risk (Patrick et al. 2010). Patrick et al. (2010) evaluated six U.S. fisheries targeting 162 stocks that exhibited varying degrees of productivity and susceptibility, and for which data quality varied. Patrick et al. (2010) found that PSA was capable of differentiating the vulnerability of stocks along the gradient of susceptibility and productivity indices. The PSA can be used as a flexible tool capable of incorporating region-specific information on fishery and management activity. Similar work was conducted by Cope et al. (2011) who found that PSA is a simple and flexible approach to incorporating vulnerability measures into complex stock designations while also providing information helpful in prioritizing stock- and complex-specific management.

Extrapolation (Robin Hood Method)

When very limited or no data are available for a stock or specific species in a region, then managers may need to rely on extrapolation methods to inform decisions. Often, low-value stocks are data-poor (Honey et al. 2010). This method is termed the “Robin Hood” approach in Australia because it takes information and scientific understanding in data-rich fisheries and “gives” inferences to the data-poor fisheries (Smith et al. 2009). Data may include: (1) the local knowledge of the fishers and resource users; and/or (2) scientific research and ecosystem understanding from “sister” systems thought to be similar (Honey et al. 2010). Extrapolation from similar systems or related species may offer an informed starting point from which managers can build precautionary management (Honey et al. 2010). In these situations, life-history characteristics, potentially sustainable harvest levels, spawning behavior, and other information can be gleaned from nearby stocks, systems, or related species (Honey et al. 2010).
Decision-making methods

Decision trees

Decision trees provide systematic, hierarchical frameworks for decision-making that can scale to any spatial, temporal, or management context in order to address a specific question. A decision tree may be customized to meet any need (Honey et al. 2010). Trees may include: identification of reference points based on stock characteristics and vulnerability (Cope and Punt 2009); fostering of fine-scale, transparent, and local management (Prince 2010); and, estimation and refinement of an appropriate Total Allowable Catch (TAC) level (Wilson et al. 2010).

Management strategy evaluation

Management Strategy Evaluation (MSE) is a general modeling framework designed for the evaluation of performance of alternative management strategies for pursuing different objectives (Honey et al. 2010). This approach simulates the fishery’s response to different management strategies (e.g., different TAC levels, seasonal closures, or other effort reductions) (Honey et al. 2010). Assuming sufficient quality data exist, MSE may be useful for assessing the effectiveness of different policy options (Honey et al. 2010).

In addition, a study by Dowling et al. (2008) developed harvest strategies for data-poor fisheries in Australia. Strategies included: (i) the development of sets of triggers with conservative response levels, with progressively higher data and analysis requirements at higher response levels, (ii) identification of data gathering protocols and subsequent simple analyses to better assess the fishery, (iii) the archiving of biological data for possible future analysis, and (iv) the use of spatial management, either as the main aspect of the harvest strategy or together with other measures (Honey et al. 2010).

Cooperative research and co-management to overcome data-poor situations

A recent study by Fujita et al. (2010) identified opportunities for cooperative research and co-management that would complement (but not replace) existing top-down fishery regulations. They conclude that management and data collection would improve for some small-scale fisheries if they started: collecting data at the appropriate spatial scales; collecting local information, improving the quality of data, and overcoming constraints on data; providing ecosystem insight from a small/local scale for new and different perspectives; reducing conflicts among fishermen, scientists, and regulators; and improving the responsiveness of fisheries management to local needs. Fujita et al. (2010) suggest that scientists and managers should further develop cooperative strategies (e.g., cooperative research and co-management) and include them in the management framework.

Effective management of a fishery on a non-native species

Effective management of a fishery for a non-native species may include:

- Mitigation strategies aimed at eradication, reversing establishment, or maintenance at low abundance, as deemed appropriate and feasible for that particular case,
- Adaptation strategies that allow for recovery of species impacted by the non-native species,
- Containment measures such as fishing at the boundaries of the stock to prevent further spread, and/or
- Provisions to prohibit further introductions of any other alien species.
Appendix 4 – Bycatch reduction approaches

In general, fisheries should address bycatch with the following approaches:

- Monitor bycatch rates (using adequate observer coverage),
- Have some scientific assessment of impacts on bycatch populations
- Incorporate strategies that assure bycatch is minimized, such as:
 - Enforcing effective and appropriate bycatch caps,
 - Closing hotspots or implementing seasonal closures,
 - Promoting effective gear modifications such as BRDs, TEDs, etc.
 - Adopting bycatch-reducing strategies such as night setting,
 - Using the best available management techniques that have been demonstrated in this or a similar system to effectively constrain bycatch rates.

The effectiveness of various bycatch reduction approaches is synthesized from primary literature and reviewed below. To be considered “highly effective”, all required measures and at least one primary measures should be in place.

Seabird sources are Løkkeborg (2008) (general conclusions and Table 3, including percent effectiveness of some modification/region strata) and SBWG 2010 (Annexes 3–8). *Secondary measures may be useful in conjunction with primary measures. Turtle sources are FAO 2009 (Tables 1 and page 79) and Gilman and Lundin (2008) (Table 3). Shrimp trawl modifications sources are Eayers 2007 and Gillet 2008 (Box 14). Sharks and marine mammals from Gilman and Lundin (2008) (Table 3). General information on fishing technologies can be found at http://www.fao.org/fishery/en, and a list of bycatch reduction literature can be found here: http://www.bycatch.org/articles.

<table>
<thead>
<tr>
<th>Gear/taxon/modification</th>
<th>Primary/secondary measure*</th>
<th>Effectiveness/notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>General strategies (good for all gears/taxa)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring and compliance</td>
<td>Requirement</td>
<td>Considerable difference between experimental and real-world effectiveness. “Three common themes to successful implementation of bycatch reduction measures are long-standing collaborations among the fishing industry, scientists, and resource managers; pre- and post-implementation monitoring; and compliance via enforcement and incentives” (Cox, Lewison et al. 2007).</td>
</tr>
<tr>
<td>Avoid bycatch hotspots</td>
<td>Primary</td>
<td>Area/time closures. Generally very effective, though more so when based on data such as tagging or bycatch data. Perhaps only a secondary mitigation measure for birds (Løkkeborg 2008). Alternatively, move when interaction rates are high. Effective for all fisheries, especially with fleet communication. Closures for one taxon without commensurate reduction in effort can increase bycatch of other taxa.</td>
</tr>
<tr>
<td>Bycatch caps</td>
<td>Primary</td>
<td>i.e., fishery closes when cap exceeded.</td>
</tr>
</tbody>
</table>

Bycatch fees, Compensatory Mitigation Strategies for Marine Bycatch (CMSMB) Secondary, at best Not effective. “We conclude that, overall, CMMB has little potential for benefit and a substantial potential for harm if implemented to solve most fisheries bycatch problems. In particular, CMMB is likely to be effective only when applied to short-lived and highly fecund species (not the characteristics of most bycatch-impacted species) and to fisheries that take few non-target species, and especially few non-seabird species (not the characteristics of most fisheries). Thus, CMMB appears to have limited application and should only be implemented after rigorous appraisal on a case-specific basis; otherwise it has the potential to accelerate declines of marine species currently threatened by fisheries bycatch” (Finkelstein, Bakker et al. 2008). May be useful, but only as a complementary measure (Žydelis, Wallace et al. 2009).

Pelagic longline

Seabirds (albatrosses and petrels)	Best	No single solution to avoid incidental mortality of seabirds in pelagic longline fisheries. Most effective approach is streamer lines combined with branchline weighting and night setting. Best practices are followed for line setting and hauling (e.g., SRWG 2010).
Night setting	Primary	Proven effective in Southern Hemisphere. Streamer lines and weighted lines should also be used when interacting with nocturnal birds/fishing during bright moon.
Streamer/scarer lines	Primary	Proven to be effective in North Atlantic. Should be paired and/or weighted lines in North Pacific. Paired lines need more testing. Light configuration not recommended.
Weighted branch lines	Primary	Must be combined with other measures.
Offal discharge management	Secondary	Not yet established but is thought to assist.
Sidesetting	Secondary	Insufficiently researched; there have been operational difficulties on some vessels. Effective in Hawaii in conjunction with bird curtain and weighted branch lines. Japanese research conclusions must be combined with other measures. Untested in Southern Hemisphere.
Line shooter and mainline tension, bait caster, live bait, thawing bait	-	Not recommended.
Underwater setting chute, hook design, olfactory deterrents, blue-dyed bait	-	Insufficient research. Blue-dyed bait may be only effective with squid bait. Results inconsistent across studies.

Turtles

Replacement of J and tuna hooks with circle hooks	Primary	Wide circle hook with <= 10 degree offset.
Bait change	Primary	Use of fish instead of squid.
Deep setting	Primary	Set gear deeper than turtle abundant depths (40–100m).
Fish bait hooking	Primary	Single hooking fish bait instead of threading hook through bait multiple times.
Temporal changes	Primary	Reduce soak time and haul during daylight.
Lights on gear	Secondary	Use of intermittent flashing light sticks instead of continuous use non-luminous gear.
Handling and release practices	Primary	To reduce mortality of caught turtles.

Sharks
Bait change

| Bait change | Primary | Fish instead of squid. |

Prohibit wire leaders

| Prohibit wire leaders | Primary |

Deeper setting

| Deeper setting | Primary | Avoid surface waters. |

Shark repellants

| Shark repellants | - | Insufficient research. |

Circle hooks

Marine mammals

| Marine mammals | | |

Weak hooks, deterents, echolocation disruption

| Weak hooks, deterents, echolocation disruption | - | Insufficient research. |

Other finfish (including juvenile targets)

| Other finfish (including juvenile targets) | | |

Circle hooks

| Circle hooks | May help reduce mortality of billfish and tunas. |

Shellfish

| Shellfish | Not problematic |

Bottom longline (Many measures similar to pelagic longline)

Seabirds (albatrosses and petrels)

| Seabirds (albatrosses and petrels) | Best | No single solution to avoid incidental mortality of seabirds in demersal longline fisheries. No combination specified; assume streamers, weighted and night setting, or Chilean longline method (vertical line with very fast sink rates—considered effective even without other measures; widely used in South American waters and SW Atlantic). Best practices are followed for line setting and hauling (e.g., SRWG 2010). |

| Streamer/scarer lines | Primary | Effective, but must be used properly (streamers are positioned over sinking hooks). Better when combined with, e.g., night setting, weighting, or offal control. |

| Weighted lines | Primary | Must be combined with other measures, especially streamers, offal control and/or night setting. |

| Night setting | Primary | Same as pelagic. |

| Haul curtain (reduce bird access when line is being hauled) | Secondary | Can be effective, but must use strategically as some birds become habituated. Must be used with other measures. |

| Offal discharge control (discharge homogenized offal at time of setting) | Secondary | Must be used in a combo, e.g., with streamers, weighting, or night setting. |

| Side setting | Secondary | Insufficiently researched; there have been operational difficulties on some vessels. |

| Hook design, olfactory deterents, underwater setting chutes, blue-dyed bait, thawed bait, use of line setter | - | Insufficiently researched. Blue-dyed bait, thawed bait, and use of line setter not relevant in demersal gear. |

Turtles, sharks, mammals, other finfish, shellfish

| Turtles, sharks, mammals, other finfish, shellfish | See pelagic longlines |

Trawl
Seabirds (albatrosses and petrels)

<table>
<thead>
<tr>
<th>Method</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best</td>
<td>Little work has been done on seabird bycatch mitigation in trawl fisheries (pelagic and demersal). There is no single solution to avoid incidental mortality of seabirds in trawl fisheries. The most effective approach is offal discharge and discards control, through full retention of all waste or meal (the conversion of waste into fish meal reducing discharge into sump water) plus streamer lines. Effectiveness of other offal control measures such as mincing and batching is not clear.</td>
</tr>
<tr>
<td>Limited waste control</td>
<td>No discharge of offal or discards during shooting and hauling.</td>
</tr>
<tr>
<td>Reduce cable strike through bird scaring wires or snatch block</td>
<td>Scarers recommended even when offal/discard management is in place. Snatch block recommended on theory.</td>
</tr>
<tr>
<td>Reduce net entanglement through net binding, net weights, net cleaning</td>
<td>Recommended on theory.</td>
</tr>
<tr>
<td>Net jackets</td>
<td>Not recommended.</td>
</tr>
<tr>
<td>Reduced mesh size, acoustic scarers, warp scarers, bird bafflers, cones on warp cables</td>
<td>Effectiveness not yet established.</td>
</tr>
</tbody>
</table>

Turtles

<table>
<thead>
<tr>
<th>Method</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Any modification to the trawl to reduce the capture of turtles, principally in tropical/subtropical shrimp trawls. Typically a grid or large-hole mesh designed to prevent turtles from entering the codend. The only designs approved for use in the US warm-water shrimp fisheries are hard TEDs (i.e., “hooped hard TEDs” such as NMFS, Coulon and Cameron TEDs, “single grid hard TEDs” such as the Matagorda, Georgia, or Super Shooter TED, and the Weedless TED) and the Parker Soft TED (the latter only in offshore and inshore waters in Georgia and South Carolina). Hard TEDs that are not approved for use in the shrimp fisheries are used in the Atlantic summer flounder bottom trawl fishery. TEDs must be used in conjunction with escape hatches, which also vary in size and design. More details on TED/hatch designs and US regulations can be found in Eayers (2007).</td>
</tr>
</tbody>
</table>

Sharks

<table>
<thead>
<tr>
<th>Method</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>TEDs generally allow large animals to escape, e.g., sharks (Belcher and Jennings 2010). Highly variable depending on net type and TED used. BRD made little difference (fisheye).</td>
</tr>
</tbody>
</table>

Marine mammals

<table>
<thead>
<tr>
<th>Method</th>
<th>Effectiveness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Grids generally allow large animals to escape.</td>
</tr>
</tbody>
</table>

| Other finfish |
Bycatch reduction device (BRD): Catch separators

A BRD is any modification designed principally to exclude fish bycatch from shrimp trawls. Catch separator designs include hard grids (e.g., Nordmore grid) and soft mesh panels attached at an angle inside the trawl net as well as the Juvenile and Trash Excluder Device (JTED), which has a grid/mesh design partially covering the inside of the trawl net. Hard grids are generally seen as more effective than soft panels. Effectiveness of JTED unknown.

BRD: Active swimmer escape hatches

Designed for strong-swimming fish to actively escape (shrimp are more passive swimmers). Most are located in the codend (e.g., fisheye and fishbox) although others can be in the body of the trawl (square mesh window, composite square mesh panel, radial escape section).

BRD: Square-mesh codend

Square mesh stays open under tow (unlike diamond mesh).

BRD assist

E.g., the cone. Stimulates fish to swim forward through escape hatches like the fisheye, square mesh window or radial escape section.

Coverless trawl

Inclusion of increased mesh sizes in the upper wings and upper netting panel immediately behind the headrope crown, coupled with reduced headline height, encourages the escape of fish species such as haddock and whiting in and around the mouth of the trawl.

Rigging modification

Triangular/diamond-shaped cut in the top of the codend (e.g., flapper), changes to ground chain settings, headline height reduction, a length of twine stretched between the otter boards to frighten fish, large mesh barrier across trawl mouth and large cuts in the top panel of the net ahead of the codend.

Semi-pelagic rigging

Avoid contact with seabed.

Trawl separator (Rhule trawl)

Reduces cod catch in haddock trawls by separating catch and releasing cod from the net.

Shellfish

TEDs generally allow large animals to escape (jellyfish). Downward facing TEDs may also allow benthic invertebrates to escape.

BRD e.g., Nordmore grid

Effective for jellyfish?

Rigging modification

Longer sweeps between the otter board and trawl can reduce invertebrate bycatch.

Semi-pelagic rigging

Avoid contact with seabed.

Other

BRD: Seahorses, sea snakes in Australian prawn fisheries.

Gillnet

Seabirds

Less research than for trawls.

Visual and acoustic alerts

- Pingers may also reduce seabird bycatch (1 study in Lokkeborg 2008). High visibility panels (upper portion or checkerboard), dropped cork lines for shallow diving spp., attending nets (Wiedenfeld 2015).

Turtles

Use lower profile nets: Primary

Reduces entanglement as the net is stiffer. Good for both demersal and drift nets.

Use of tie-down ropes: Negative

Creates slack in the net, increasing chances of entanglement (rather than gilling).

Set nets perpendicular to shore: -

Insufficient research. May reduce interactions with nesting females.
| Use deterrents | - | Insufficient research. Pingers, shark silhouettes, lights or chemicals. |
| Deep setting | - | Insufficient research. Avoid upper water column (above 40m). |

Sharks

Unknown

Marine mammals

| Pingers | Acoustic devices to keep cetaceans (and possibly pinnipeds) away from nets. Effectiveness appears to vary considerably depending on fishery and cetacean species: http://cetaceanbycatch.org/pingers_effectiveness.cfm |

Shellfish

| Weak buoy lines |
| Mesh size |

Purse Seine

Seabirds

Not problematic

Turtles

Avoid turtles	Primary
Avoid sharks	Primary
Shark repellants	-
Use of modified FAD designs	-

Sharks

Avoid sharks	Primary
Shark repellants	-
Use of modified FAD designs	-

Marine mammals

| Backdown maneuver, Medina panel, deploy rescuers | Primary |
| Avoid mammals | Restrict setting on mammals. |

Other finfish

| Sorting grids | - |
| Avoid finfish | Restrict setting on FADs. |

Shellfish

| Not problematic |

Pots and traps

Turtles

| BRDs | Primary |
| E.g., Diamondback terrapins in Floridian blue crab pot fishery (Butler and Heinrich 2005). |

Marine mammals

| Weak lines | Primary |
| E.g., northern right whales, NE lobster fishery. |

Finfish, invertebrates

| BRDs | Primary |
Appendix 5 – Impact of fishing gear on the substrate

In order to assess fisheries for habitat impacts under the Seafood Watch ® criteria, we developed a matrix to help determine the potential impacts that different fishing gear may have on various habitat types. The matrix was developed based on similar work done by the New England Fisheries Management Council (NEFMC 2010) and the Pacific Fisheries Management Council (PFMC 2005).

The NEFMC (2010) created a “Swept Area Seabed (SASI) model” that assessed habitat susceptibility and recovery information. Susceptibility and recovery were scored (0–3) based on information found in the scientific literature and supplemented with professional judgment when research results were deficient or inconsistent.

“Vulnerability was defined as the combination of how susceptible the feature is to a gear effect and how quickly it can recover following the fishing impact. Susceptibility was defined as the percentage change in functional value of a habitat component due to a gear effect, and recovery was defined as the time in years that would be required for the functional value of that unit of habitat to be restored (ASFMC 2010).”

The PFMC (2005) created a similar habitat sensitivity scale (0–3) that represents the relative sensitivity of different habitats to different gear impacts. The sensitivity of habitats from the PFMC (2005) was based on actual impacts reported in the scientific literature.

The relative impacts by gear and habitat type used for the Seafood Watch® matrix were based on the sum of sensitivity and recovery values from tables developed by the NEFMC (2010) (substrates) and the PFMC (2005) (biogenic). The NEFMC (2010) excluded deep-sea corals with extreme recovery times. The values for deep-sea corals in this matrix are the sum of the sensitivity and recovery scores from PFMC (2005). Other biogenic habitats that were not included in the NEFMC (2010) data tables include: seagrass, sponge reefs (rather than individual sponges) and maerl beds. Due to the slow recovery and importance of these habitat types, they have been given the same value as coral and sponge habitats, all of which are listed as “biogenic”.

Hall-Spencer and Moore (2000) examined the effects of fishing disturbance on maerl beds. Maerl beds are composed of a calcareous alga and form complex habitats with a high degree of complexity. The associated species assemblages have high diversity (Hall-Spencer and Moore, 2000). Hall-Spencer and Moore (2000) showed that four years after an initial scallop-dredging disturbance had occurred, some fauna, such as the bivalve Limaria hians, had still not re-colonized the trawl tracks. Similarly, work by Sainsbury et al. (1998; in Kaiser et al. 2001) suggests that recovery rates may exceed fifteen years for sponge and coral habitats off the western coast of Australia.

Hydraulic clam dredges are rated as a high concern according to Seafood Watch ®. There are very few studies on the impact of this gear type, so we have relied on expert opinion (NEFMC 2010). Hydraulic clam dredges are used primarily in sand and granule-pebble substrates because they cannot be operated in mud or in rocky habitats (NEFMC 2010). This gear type is effective at pulverizing and/or removing solids and flattening out seafloor topography (NEFMC 2010). In addition, the habitats where this gear type is used are very susceptible to hydraulic dredges; recovery is moderate on average (NEFMC 2010). This leads Seafood Watch® to rate hydraulic dredges as “high concern.” Hydraulic dredges do not operate on deep-sea coral or other biogenic habitats.
Neckles et al. (2005) found significant differences in eelgrass biomass between disturbed and reference sites up to seven years after dragging. The authors projected that it would require a mean of 10.6 years for eelgrass shoot density to recover in areas of intense dragging.

Demersal seines were not evaluated in the reports by Fuller et al. (2008), Chuenpagdee et al. (2003), NEFMC (2010) or PFMC (2005). Demersal seines include: Danish seines, Scottish fly-dragging seines and pair seines. These seines are similar to some bottom trawl gear in that they have a funnel shaped net with a groundrope. They are generally hauled by wires or ropes, and although they are lighter than some bottom trawl gear, they create habitat disturbance (Rose et al. 2000; Thrush et al. 1998; Valdemarason and Suuronen 2001). A review of trawling impacts by Jones (1992) grouped bottom trawling, dredges and Danish seines together as having similar impacts on the benthos when assessing the environmental effects of bottom trawling. However, studies have demonstrated Danish seines to have less impact on the substrate compared to bottom trawls (Gillet 2008). Therefore, in our matrix they are given an intermediate score as more damaging than bottom longlines and bottom gillnets, but less damaging than bottom trawls. Beam trawls were also not included in the reports, but were considered to be similar to otter trawls.

The matrix developed from the sources referenced above is shown on the next page. For use in evaluating the Fisheries Criteria, these data have been summarized into categories (low impact, moderate, moderate-severe, severe, and very severe) to simplify use of the table.
Habitat impacts matrix: Relative impacts by gear and habitat type.

<table>
<thead>
<tr>
<th>Gear Type</th>
<th>Mud (low)</th>
<th>Sand (low)</th>
<th>Granule-pebble (low)</th>
<th>Cobble (low)</th>
<th>Boulder (low)</th>
<th>Deep-sea corals **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line, Vertical (BL/2)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>0.5</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Longline, Bottom****</td>
<td>0.7</td>
<td>0.7</td>
<td>0.9</td>
<td>0.8</td>
<td>1.4</td>
<td>1.3</td>
</tr>
<tr>
<td>Trap (lobster and deep-sea red crab)</td>
<td>1.3</td>
<td>1.3</td>
<td>1.2</td>
<td>1.2</td>
<td>1.8</td>
<td>1.7</td>
</tr>
<tr>
<td>Gillnet, Bottom****</td>
<td>1.3</td>
<td>1.3</td>
<td>1.5</td>
<td>1.4</td>
<td>2.0</td>
<td>2.1</td>
</tr>
<tr>
<td>Bottom Longline, Gillnet</td>
<td>1.0</td>
<td>1.0</td>
<td>1.2</td>
<td>1.1</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Seine, Bottom (BL,G+TBO/2)</td>
<td>1.8</td>
<td>1.7</td>
<td>2.0</td>
<td>1.9</td>
<td>2.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Trawl, Shrimp (BS+TBO/2)</td>
<td>2.2</td>
<td>2.1</td>
<td>2.5</td>
<td>2.3</td>
<td>3.0</td>
<td>2.8</td>
</tr>
<tr>
<td>Trawl, Bottom Otter</td>
<td>2.6</td>
<td>2.4</td>
<td>2.9</td>
<td>2.7</td>
<td>3.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Dredge, New Bedford Scallop</td>
<td>2.6</td>
<td>2.4</td>
<td>3.0</td>
<td>2.8</td>
<td>3.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Dredge, Hydraulic Clam</td>
<td>4.4</td>
<td>4.0</td>
<td>4.9</td>
<td>4.3</td>
<td>5.0</td>
<td>n/a***</td>
</tr>
<tr>
<td>Explosives/Cyanide</td>
<td>n/a***</td>
<td>n/a***</td>
<td>n/a***</td>
<td>n/a***</td>
<td>n/a***</td>
<td>n/a***</td>
</tr>
</tbody>
</table>

* Shrimp trawls tend to be lighter than bottom otter trawls for fish and do not need to touch the seabed to be effective.

** Most biogenic habitats (macroalgae, cerianthid anemones, polychaetes, sea pens, sponges, mussel and oyster beds) are incorporated into the scores for each substrate/gear combination in the table. NEFMC 2010 specifically excluded deep-sea corals. The numbers for deep-sea corals in this matrix are the sum of the sensitivity and (standardized) recovery scores in PFMC 2005. Other biogenic habitats that were not included in the NEFMC data tables include seagrass meadows, sponge reefs (rather than individual sponges) and maerl beds. Use the “deep-sea corals” column for these habitats.

*** Scores not determined for hydraulic dredges in these habitats as the gear is assumed to not operate in them (NEFMC 2010).

**** NEFMC 2010 groups bottom longlines and gillnets as ‘fixed gear’ (not shown in table). These scores have been disaggregated here for substrate habitats only by adding 0.4 to the aggregated score for gillnets and subtracting 0.4 for longlines, based on the relative impacts shown in PFMC 2005 (i.e. that gillnets are generally more damaging than longlines).

The values above are the sum of sensitivity and recovery values in tables from Section 5.2 in Part 1 of (NEFMC 2010) (substrates) and Tables 4 and 5 in Appendix C, Part 2 of (PFMC 2005) (biogenic). Gear types in black are from the Swept Area Seabed Impact (SASI) model used for the NEFMC EFH process (NEFMC 2010). Gear types in red are derived from those in black. Substrate types are self-explanatory except that mud includes clay-silt and muddy sand, and boulder includes rock. The energy regime is used here as a proxy for natural disturbance, with a cutoff between low and high stability at 60m depth. Most biogenic habitats (macroalgae, cerianthid anemones, polychaetes, sea pens, sponges, mussel and oyster beds) are incorporated into the scores for each substrate/gear combination in the table. NEFMC (2010) specifically excluded deep-sea corals with extreme recovery times. The numbers for deep-sea corals in this matrix are the sum of the sensitivity and (standardized) recovery scores from PFMC (2005). Other biogenic habitats that were not included in the NEFMC data tables include seagrass meadows, sponge reefs (rather than individual sponges) and maerl beds. Use the “deep-sea corals” column for these habitats.
Appendix 6 – Gear modification table for bottom tending gears

Spatial protection

Reducing the footprint of fishing through spatial management can be one of the most effective ways to mitigate the ecological impact of fishing with habitat-damaging gears (Lindholm et al. 2001; Fujioka 2006). The relationship between gear impacts, the spatial footprint of fishing and fishing effort (i.e., frequency of impact) is complex (Fujioka 2006) and cannot be quantified precisely in Seafood Watch® assessments. Nevertheless, criteria should acknowledge the benefits of conservative habitat protection efforts by adjusting the habitat score. Thresholds for adjusting the habitat score due to habitat protection from the gear-type used in the fishery (50% protected to qualify as “strong mitigation” and 20% protected to qualify as “moderate mitigation”) are based on recommendations for spatial management found in the scientific literature as noted in Auster (2001). Auster recommends use of the precautionary principle when a threshold level of 50% of the habitat management area is impacted by fishing, with a minimum of 20% of regions in representative assemblages and landscape features protected in MPAs in order to minimize impacts on vulnerable species and sensitive habitats.

The table below gives examples of gear modifications that are believed to be moderately effective at reducing habitat impacts based on scientific studies. This table will be continually revised as new scientific studies become available. The main sources for the current table are He (2007) and Valdemarsen, Jorgensen et al. (2007).

<table>
<thead>
<tr>
<th>Gear</th>
<th>Modification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Otter Trawls</td>
<td>Semi-pelagic trawl rigging (trawl doors, sweeps and bridles off the bottom, also includes modifications such as short bridles and sweeps—most commonly used for shrimp, nephrops and other species that are not herded by sand clouds and bridles due to poor swimming ability)</td>
</tr>
<tr>
<td></td>
<td>Quasi-pelagic trawl rigging/sweepless trawls (trawl doors remain in contact with the seafloor, remaining gear largely off the bottom, e.g., whiting in New England, flatfish in Alaska, red snapper in Australia)</td>
</tr>
<tr>
<td></td>
<td>Lighter ground gear (e.g., fewer bobbins)</td>
</tr>
<tr>
<td></td>
<td>Use of rollers instead of rockhoppers</td>
</tr>
<tr>
<td></td>
<td>Trawl door modifications such as high aspect (smaller footprint), cambered (generally for fuel efficiency) or soft doors (e.g., self-spreading ground gear)</td>
</tr>
</tbody>
</table>
Appendix 7 – Data-limited assessment methods

This appendix offers guidance as to what data-limited assessment methods may be appropriate for consideration in Criterion 1. Guidance from the Fair Trade USA standard, Appendix B Table 1.

Note: This guidance is provided for illustration purposes only. Further guidance to be developed based on work by the NCEAS SNAP group on data-limited fisheries. Expert input and case-by-case interpretation is necessary to ensure the assessment indicator is appropriate in the context of the specific fishery, and interpretation should take into account specific factors or changes in the fishery that may affect results (e.g., demand-driven factors that affect size of the catch).

<table>
<thead>
<tr>
<th>Assessment Indicator</th>
<th>Positive Outcome</th>
<th>Negative Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density Ratio Fished/Unfished Area*</td>
<td>All fish >0.8</td>
<td>All fish <0.8</td>
</tr>
<tr>
<td></td>
<td>Mature fish >0.6</td>
<td>Mature fish <0.6</td>
</tr>
<tr>
<td>Fishing mortality vs. Natural mortality</td>
<td>Fishing mortality < Natural mortality</td>
<td>Fishing mortality > Natural mortality*</td>
</tr>
<tr>
<td>Spawning potential ratio (SPR)</td>
<td>SPR ≥ 40%</td>
<td>SPR ≤ 40%</td>
</tr>
<tr>
<td>Percentage of mature fish in catch</td>
<td>>90%</td>
<td><90%</td>
</tr>
<tr>
<td>Percentage of fish caught at optimal length</td>
<td>>90% within +/- 10% of optimal length</td>
<td><90% within +/- 10% of optimal length</td>
</tr>
<tr>
<td>Percentage of megaspawners in catch</td>
<td><10% if management goal is no catch of megaspawners</td>
<td>>10% if management goal is no catch of megaspawners*</td>
</tr>
<tr>
<td></td>
<td>30-40% if catch believed to reflect age and size structure of stock</td>
<td><20% if catch believed to reflect age and size structure of stock</td>
</tr>
<tr>
<td>Change in average length</td>
<td>Average length is staying the same</td>
<td>Average length is decreasing</td>
</tr>
<tr>
<td>Change in CPUE</td>
<td>CPUE is stable or increasing over time</td>
<td>CPUE is decreasing over time</td>
</tr>
</tbody>
</table>

* May not be applicable in locations were no-take zones are not well enforced. Babcock and MacCall, 2011.
* May not be an appropriate performance indicator for high trophic-level predators with low natural mortality rates.
* Applicable for slow growing/slow reproducing finfish. Refer to published literature to determine the appropriate SPR for invertebrates and other fast-growing species.
10 Froese, 2004
11 Optimal length is the length where the number of fish in a given unfished year class multiplied with their mean individual weight is maximum (Froese, 2004), in other words, the size at which a cohort achieves MSY (Cope and Punt 2009, Froese et al. 2008, Froese 2004).
12 Megaspawners are fish of optimal length plus 10% (Froese, 2004).
13 Applicable if the management framework’s goal is zero catch of megaspawners.
14 Applicable if catch data reflect the age and size structure of the stock.
15 If the fishery is highly stochastic, use a running average over the last three to five years when calculating average length.
16 Ensure fishing effort is delineated by gear type to avoid conflating data over multiple fishing gears.
Performance indicators for your fishery may be higher or lower than those shown here, especially where site and species-specific studies have been conducted that indicate alternative optimal reference points. Furthermore, some indicators may be more or less suited for certain species. For example, studies have shown length-based SPR is an indicator well-suited for lobster fisheries, and density ratio is a good stock status indicator for more sedentary species such as bivalves. It is important to choose indicators and reference points appropriate for your fishery’s species.
Appendix 8 – Document Revision History

Public comment guidance – Please review the edits that were made earlier this year and provide any comments if desired.

Minor revisions were made to this document on February 12, 2016 for clarity and to address issues that were identified during pilot-testing of the Productivity-Susceptibility Analysis. Edits included the following:

- Edits to the Productivity-Susceptibility Analysis approach (modified from the Marine Stewardship Council approach):
 - We determined that analysts needed more guidance for assessing the “susceptibility” attributes under the PSA, so the language within the PSA tables was edited to provide more clarity (largely based on guidance found elsewhere in the MSC documentation) and to suggest default values that can be used in cases where data are limited.
 - In addition, we determined that the “selectivity” attribute, as written, did not adequately capture concerns with fisheries that may have a large impact on a population without capturing juveniles; for example, fisheries that heavily exploit large and fecund adults (e.g. some bluefin tuna fisheries) or target spawning aggregations (e.g. some reef fish fisheries) would be scored as a low risk (1) for selectivity and receive low vulnerability scores overall (even for most low productivity species). In order to make our approach more precautionary and more applicable to a broad range of fishing strategies, we edited the language for the “selectivity” attribute to address these concerns.

- Edits to guidance for assessing Criterion 2 species
 - We recognized that in many assessments, there may be a large number of unassessed species addressed under Criterion 2, and that the effort to assess each of these using a Productivity-Susceptibility Analysis would be prohibitive for the analysts. Also, in these data-poor cases the use of the PSA for these species does not provide any information that is materially more robust than the use of our unknown bycatch matrix. We have therefore provided guidance that where there are no stock assessments or data-limited assessments for Criterion 2 species, these should be grouped by taxon and each taxon should be scored using the Unknown Bycatch Matrix. This formalizes an approach that has been used in complex and data-poor situations in the past.
 - The unknown bycatch matrices for vulnerable taxa, which were pending finalization based on expert reviewer comments, have now been finalized.

- Other edits: Minor language edits for clarity were made to the Criterion 3 (management) tables.
Appendix References

Appendix 1

Appendix 2

Appendix 3

NMFS. 2011. Assessment Methods for Data-Poor Stocks Report of the Review Panel Meeting National Marine Fisheries Service (NMFS) Southwest Fisheries Science Center (SWFSC) Santa Cruz, California

Prince, J. D. 2010. Managing data poor fisheries: Solutions from around the world. Managing data-poor fisheries: Case studies, models and solutions. 1:3-20

Appendix 4

Appendix 5

Appendix 6

Appendix 7

106 February 12, 2016
Fair Trade USA Capture Fisheries Standard Version 1.0. Available at: http://fairtradeusa.org/sites/default/files/wysiwyg/filemanager/fish/FTUSA_CFS_Standard_1.0_EN_121914_FINAL.pdf

